Iwaki
Electromagnetic Metering Pump
EWN-Y

http://www.iwakipumps.jp
Iwaki CO., LTD. 6-8 Kanda-Sudacho 2-chome Chiyoda-ku Tokyo 101-8558 Japan
TEL: +81 3 3254 2938 FAX: +81 3 3250 8052

Instruction manual

Thank you for choosing our product.

⚠️ Please read through this instruction manual before use.

This instruction manual describes important precautions and instructions for the product. Always keep it on hand for quick reference.

© 2011 IWAKI CO., LTD.
Order confirmation

Open the package and check that the product conforms to your order. If any problem or inconsistency is found, immediately contact your distributor.

a. **Check if the delivery is correct.**

Check the nameplate to see if the information such as model codes, discharge capacity and discharge pressure are as ordered.

![Iwaki Metering Pump](image)

b. **Check if the delivery is damaged or deformed.**

Check for transit damage and loose bolts.
Contents

Order confirmation .. 2

Safety instructions .. 7

Warning .. 8
Caution .. 10
Precautions for use .. 14

Overview .. 18

Introduction .. 18
 Pump structure & Operating principle ... 18
 Auto degassing system ... 19
Features .. 20

Operational functions ... 20
 Manual mode ... 20
 EXT mode .. 21
 Digital control ... 21
 Analogue proportional control .. 22
 Pulse proportional control .. 24
 PRIME mode .. 25

Control functions .. 26
 STOP function ... 26
 Pre-STOP function .. 26
 AUX function .. 27
 Interlock function ... 27

Output functions .. 27
 OUT1 (mechanical relay) .. 27
 OUT2 (photoMOS relay) .. 28
 Analogue output .. 28

Control with external devices .. 29
 Combination with the EFS flow sensor ... 29
 Feedback control ... 30
 Batch control .. 31
 Combination with the FCP and FCM flow checker/counter .. 33
 A. MODE .. 33
 B. MODE .. 34
 C. MODE .. 35
 D. MODE .. 35
Contents

<table>
<thead>
<tr>
<th>Part names</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>37</td>
</tr>
<tr>
<td>Operational panel</td>
<td>37</td>
</tr>
<tr>
<td>Basic displays & Pump states</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification codes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump/Drive units</td>
<td>40</td>
</tr>
</tbody>
</table>

Installation ..42

<table>
<thead>
<tr>
<th>Installation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump mounting</td>
<td>42</td>
</tr>
<tr>
<td>Plumbing</td>
<td>43</td>
</tr>
<tr>
<td>Tube connection</td>
<td>43</td>
</tr>
<tr>
<td>Check valve mounting</td>
<td>45</td>
</tr>
<tr>
<td>Wiring (pump)</td>
<td>47</td>
</tr>
<tr>
<td>End terminals</td>
<td>48</td>
</tr>
<tr>
<td>Power voltage/Earthing</td>
<td>48</td>
</tr>
<tr>
<td>Signal wire connection</td>
<td>50</td>
</tr>
<tr>
<td>STOP signal</td>
<td>51</td>
</tr>
<tr>
<td>Input signal</td>
<td>52</td>
</tr>
<tr>
<td>Output signal</td>
<td>52</td>
</tr>
<tr>
<td>Wiring (external devices)</td>
<td>53</td>
</tr>
<tr>
<td>EFS flow sensor mounting (purchase separately)</td>
<td>53</td>
</tr>
<tr>
<td>FCP/FCM mounting (purchase separately)</td>
<td>56</td>
</tr>
<tr>
<td>Flow counter (FCP)</td>
<td>56</td>
</tr>
<tr>
<td>Flow checker (FCM)</td>
<td>56</td>
</tr>
<tr>
<td>FCP/FCM wiring</td>
<td>57</td>
</tr>
</tbody>
</table>

Operation ..58

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before operation</td>
<td>58</td>
</tr>
<tr>
<td>Points to be checked</td>
<td>58</td>
</tr>
<tr>
<td>Retightening of pump head fixing bolts</td>
<td>58</td>
</tr>
<tr>
<td>Use of hexagon wrench instead of a torque wrench</td>
<td>59</td>
</tr>
<tr>
<td>Stroke rate adjustment</td>
<td>59</td>
</tr>
<tr>
<td>Degassing</td>
<td>60</td>
</tr>
<tr>
<td>EWN-VC/-VH/-PC/-PH/-TC/-PP/-SH</td>
<td>60</td>
</tr>
<tr>
<td>EWN-FC/-P6-V</td>
<td>62</td>
</tr>
<tr>
<td>Flow rate adjustment</td>
<td>64</td>
</tr>
<tr>
<td>Stroke rate adjustment</td>
<td>65</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>66</td>
</tr>
<tr>
<td>Flow calibration</td>
<td>67</td>
</tr>
<tr>
<td>Before a long period of stoppage (one month or more)</td>
<td>68</td>
</tr>
<tr>
<td>Operation programming</td>
<td>69</td>
</tr>
<tr>
<td>Programming flow</td>
<td>72</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Manual operation</td>
<td>74</td>
</tr>
<tr>
<td>EXT operation</td>
<td>75</td>
</tr>
<tr>
<td>Digital control</td>
<td>75</td>
</tr>
<tr>
<td>Buffer ON/OFF selection (MULT/DIV)</td>
<td>76</td>
</tr>
<tr>
<td>Analogue proportional control</td>
<td>77</td>
</tr>
<tr>
<td>Pulse proportional control</td>
<td>82</td>
</tr>
<tr>
<td>Priming function</td>
<td>85</td>
</tr>
<tr>
<td>Keypad lock</td>
<td>85</td>
</tr>
<tr>
<td>Keypad lock activation</td>
<td>85</td>
</tr>
<tr>
<td>Keypad lock release</td>
<td>86</td>
</tr>
<tr>
<td>Emergency stop with a keypad lock state</td>
<td>86</td>
</tr>
<tr>
<td>Unit change</td>
<td>87</td>
</tr>
<tr>
<td>Stroke rate unit</td>
<td>87</td>
</tr>
<tr>
<td>Flow rate unit</td>
<td>87</td>
</tr>
<tr>
<td>User mode</td>
<td>88</td>
</tr>
<tr>
<td>Output setting</td>
<td>89</td>
</tr>
<tr>
<td>INPUT setting</td>
<td>92</td>
</tr>
<tr>
<td>EXT mode setting</td>
<td>94</td>
</tr>
<tr>
<td>FCP/FCM setting</td>
<td>94</td>
</tr>
<tr>
<td>PIN number entry</td>
<td>97</td>
</tr>
<tr>
<td>Operation history</td>
<td>98</td>
</tr>
<tr>
<td>Combination with the EFS flow sensor</td>
<td>99</td>
</tr>
<tr>
<td>Feedback control</td>
<td>99</td>
</tr>
<tr>
<td>Batch control</td>
<td>100</td>
</tr>
<tr>
<td>Buffer ON/OFF selection (Batch)</td>
<td>101</td>
</tr>
<tr>
<td>Default setting</td>
<td>102</td>
</tr>
<tr>
<td>Out of measurement and Poor flow alarms (OUT1 & 2)</td>
<td>103</td>
</tr>
</tbody>
</table>

Maintenance.. **105**

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting</td>
<td>106</td>
</tr>
<tr>
<td>Error codes</td>
<td>107</td>
</tr>
<tr>
<td>Error code information</td>
<td>107</td>
</tr>
<tr>
<td>Countermeasures</td>
<td>107</td>
</tr>
<tr>
<td>Error display</td>
<td>107</td>
</tr>
<tr>
<td>Inspection</td>
<td>108</td>
</tr>
<tr>
<td>Daily inspection</td>
<td>108</td>
</tr>
<tr>
<td>Periodic inspection</td>
<td>108</td>
</tr>
<tr>
<td>Wear part replacement</td>
<td>109</td>
</tr>
<tr>
<td>Wear part list</td>
<td>109</td>
</tr>
<tr>
<td>Before replacement</td>
<td>110</td>
</tr>
<tr>
<td>Valve set replacement</td>
<td>110</td>
</tr>
<tr>
<td>Discharge valve set disassembly/assembly</td>
<td>110</td>
</tr>
</tbody>
</table>

Contents | 5
Suction valve set disassembly/assembly ... 112
Spacer set replacement (auto degassing type).................................. 113
Air vent valve set replacement (auto degassing type)....................... 114
Diaphragm replacement .. 114

Exploded view ... 117

Pump head, Drive unit & Control unit ... 117

Pump head .. 118
- EWN-VC/VH/VE/PC/PH/PE/TC .. 118
- EWN FC ... 119
- EWN SH .. 120
- EWN-C31 P6-V ... 121
- EWN-B11/-B16/-C16/-C21 VC-A/VH-A 122

Specifications/Outer dimensions ... 123

Specifications ... 123
- Pump unit .. 123
- Control unit .. 126
- Power cable ... 127
- Pump colour .. 127

Outer dimensions .. 128
- EWN-B11/-B16/-B21/-C16/-C21 VC/VH/VE/PC/PH/PE 128
- EWN- B31/-C31 VC/VH/VE/PC/PH/PE .. 128
- EWN-C36 VC/VH/VE/PC/PH/PE ... 129
- EWN-B11/-B16/-B21/-C16/-C21 FC ... 129
- EWN-B31/-C31 FC .. 130
- EWN-C36 FC .. 130
- EWN-B11/-B16/-B21/-C16/-C21 TC .. 131
- EWN-B31/-C31 TC .. 131
- EWN-C36 TC ... 132
- EWN-B11/-B16/-B21/-C16/-C21 SH .. 132
- EWN-B31/-C31 SH .. 133
- EWN-C36 SH ... 133
- EWN-B11/-B16/-B21/-C16/-C21 VC-C/VH-C/VE-C (high compression type) ... 134
- EWN-B11/-C-16 PC-H/PH-H/PE-H (high pressure type) 134
- EWN-B11/-C16 SH-H (high pressure type) 135
- EWN-C31 P6-V (high viscosity type) .. 135
- EWN-B11/-B16 (auto degassing type) 136
- EWN-C16/-C21 (auto degassing type) 136
Safety instructions

Read through this section before use. This section describes important information for you to prevent personal injury or property damage.

Symbols
In this instruction manual, the degree of risk caused by incorrect use is noted with the following symbols. Please pay attention to the information associated with the symbols.

⚠️ WARNING
Indicates mishandling could lead to a fatal or serious accident.

⚠️ CAUTION
Indicates mishandling could lead to personal injury or property damage.

A symbol accompanies each precaution, suggesting the use of "Caution", "Prohibited actions" or specific "Requirements".

<table>
<thead>
<tr>
<th>Caution marks</th>
<th>Prohibited mark</th>
<th>Requirement mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨</td>
<td>⚠️</td>
<td>⚠️</td>
</tr>
<tr>
<td>Caution</td>
<td>Prohibited</td>
<td>Requirement</td>
</tr>
<tr>
<td>Electrical shock</td>
<td>Do not rework or alter</td>
<td>Wear protection</td>
</tr>
<tr>
<td>Grounding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⚠️ Export Restrictions
Technical information contained in this instruction manual might be treated as controlled technology in your countries, due to agreements in international regime for export control.
Please be reminded that export license/permission could be required when this manual is provided, due to export control regulations of your country.
WARNING

Turn off power before service
Risk of electrical shock. Be sure to turn off power to stop the pump and related devices before service is performed.

Couper l'alimentation électrique de la pompe avant intervention
Intervenir sur la pompe sans avoir au préalablement coupé l'alimentation électrique peut déclencher des décharges électriques. Avant d'entreprendre n'importe quel type d'intervention, veillez à mettre la pompe et tout dispositif connexe hors tension à l'aide de l'interrupteur prévu à cet effet.

Stop operation
If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems.

Arrêter le fonctionnement
Si vous détectez une anomalie ou des signes suspects et inhabituels pendant le fonctionnement, interrompez immédiatement les opérations et inspectez, résolvez les problèmes.

Do not use the pump in any condition other than its intended purpose
The use of the pump in any conditions other than those clearly specified may result in failure or injury. Use this product in specified conditions only.

Se conformer uniquement aux applications prévues
La pompe doit être utilisée conformément à l’usage pour lequel elle a été prévue et dans le respect de ses caractéristiques techniques. Toute utilisation non conforme peut entraîner un incident ou endommager le dispositif.

Do not modify the pump
Alterations to the pump carries a high degree of risk. It is not the manufacturer's responsibility for any failure or injury resulting from alterations to the pump.

Ne pas modifier la pompe
Ne jamais modifier une pompe sous peine de causer un incident grave. Iwaki ne pourra en aucun cas être tenu responsable d’un incident ou de dégâts survenus à la suite d’une modification du dispositif.
Wear protective clothing
Always wear protective clothing such as an eye protection, chemical resistant gloves, a mask and a face shield during disassembly, assembly or maintenance work. The specific solution will dictate the degree of protection. Refer to MSDS precautions from the solution supplier.

Porter un équipement de protection
Toujours porter un équipement de protection (lunettes, gants résistants aux produits chimiques, masque, casque) durant le démontage, l’assemblage et la maintenance.
Le travail effectué dictera le degré de protection. Référez-vous au MSDS de la solution proposée par le fournisseur.

Do not damage the power cable
Do not pull, knot, or crush the power cable. Damage to the power cable could lead to a fire or electrical shock if cut or broken.

Ne pas endommager le câble électrique
Ne pas tirer ou faire un nœud avec le câble électrique. Endommager un câble électrique pout provoquer une incendie ou une décharge électrique.

Do not operate the pump in a flammable atmosphere
Do not place explosive or flammable material near the pump.

Ne pas utiliser la pompe dans une atmosphère explosive
Pour votre sécurité, du matériel dangereux ou inflammable ne doit pas être placé près de la pompe.

Risk of electric shock
This pump is supplied with a grounding conductor and grounding-type attachment plug. To reduce the risk of electric shock, be certain that it is connected only to a properly grounded, grounding type receptacle.

Risque de choc électrique
La pompe est fournie avec un conducteur pour mise à la terre et une prise courant. Afin de réduire le risque de choc électrique, veillez à ce que la terre soit correctement raccordée.
Qualified personnel only
The pump should be handled or operated by qualified personnel with a full understanding of the pump. Any person not familiar with the product should not take part in the operation or maintenance of the pump.

Opérateur qualifié uniquement
La pompe doit être manipulée ou utilisée par du personnel qualifié connaissant parfaitement la pompe. Tout autre personne étrangère ne doit pas prendre part à l’utilisation ou à la maintenance de la pompe.

Use specified power only
Do not apply power other than that specified on the nameplate. Otherwise, failure or fire may result. Ensure the pump is properly grounded.

Utilisez une tension appropriée uniquement
Ne pas appliquer une autre tension que celle spécifiée sur la plaque signalétique sinon, il peut en résulter une panne ou une incendie. Assurez-vous également de la mise à la terre de la pompe.

Do not run pump dry
Do not run pump dry for more than 30 minutes (even when the pump runs for degassing). Otherwise, the pump head fixing screws may loosen and liquid may leak. Optimise your system. If the pump runs dry for a long period (for more than 30 minutes), the pump head and the valve cases may deform by friction heat and consequently leakage results.

Ne faite pas fonctionner la pompe à sec
Ne faite pas fonctionner la pompe à sec plus de 30 minutes (même lorsque la pompe fonctionne pour dégazer). Sinon, les visses de fixation de la tête peuvent se dévisser et il peut y avoir une fuite de liquide. Optimalisez l’installation de façon à ce que la pompe ne fonctionne pas à sec. Si la pompe fonctionne à sec pour une longue période (plus de 30 minutes), la tête de la pompe et le guide de clapets peuvent être déformés par friction causée par la chaleur et il en résulterait des fuites.
Keep electric parts and wiring dry
Risk of fire or electric shock. Install the pump where it can be kept dry.

Ne mouillez pas les parties électriques ou les câbles
Risque d’incendie ou de décharge électrique. Installez la pompe dans un endroit sec.

Observe an applicable MSDS
Take account of installation environment. Chemicals should be controlled in accordance with a MSDS. Do not send potable water or circulate heated water with this pump.

Observez un « MSDS » applicable

Do not install or store the pump:
• In a flammable atmosphere.
• In a dusty/humid environment.
• Where ambient temperature can exceed 0-40ºC.
• In direct sunlight or wind & rain.

N’installez ou ne stockez pas la pompe dans les endroits suivantes:
• Dans une atmosphère inflammable
• Dans un endroit poussiéreux ou humide.
• Dans une place où la température n’est pas comprise entre 0 et 40 °C.
• Directement sous le soleil, le vent ou la pluie.

Spill precautions
Ensure protection and containment of solution in the event of plumbing or pump damage (secondary containment).

Déversement accidentel
Prenez des mesures protectrices contre tout incident résultant d’un débit trop important de la pompe ou d’une casse de tuyauterie.
Do not use the pump in a wet location
The pump is not waterproof. Use of the pump in wet or extremely humid locations could lead to electric shock or short circuit.

N'utilisez pas la pompe sous l'eau
La pompe n'est pas complètement étanche. Utiliser la pompe dans l'eau ou dans un endroit très humide peut créer une décharge électrique ou un court-circuit.

Grounding
Risk of electrical shock! Always properly ground the pump. Conform to local electric codes.

Mise à la terre
Veillez à ne pas faire fonctionner la pompe sans avoir au préalable prévu une mise à la terre. Celle-ci permettra d'éviter d'éventuelles décharges électriques. Vérifiez que le câble de mise à la terre est bien branché.

Install a GFCI (earth leakage breaker)
An electrical failure of the pump may adversely affect other devices on the same line. Purchase and install a GFCI (earth leakage breaker) separately.

Détecteur de fuites à la terre
Un problème électrique peut affecter défavorablement le dispositif. Achetez et installez un détecteur de fuites à la terre.

Preventative maintenance
Follow instructions in this manual for replacement of wear parts. Do not disassemble the pump beyond the extent of the instructions.

Remplacement des pièces usées
Suivez les instructions de ce manuel pour remplacer les pièces usées. Ne démontez pas la pompe au-delà des instructions.

Do not use a damaged pump
Use of a damaged pump could lead to an electric shock or death.

N'utilisez pas une pompe endommagée
Utiliser une pompe endommagée peut provoquer une décharge électrique ou la mort.
Disposal of a used pump
Dispose of any used or damaged pump in accordance with local rules and regulations. If necessary, consult a licensed industrial waste disposal company.

Elimination des pompes usées
Elle doit se faire en conformité avec les règles locales en vigueur (consultez une entreprise certifiée et spécialisée).

Check pump head bolts
Liquid may leak if any of the pump head bolts become loose. Tighten the bolts evenly to the following torque in diagonal order before initial operation and at regular intervals.

<table>
<thead>
<tr>
<th>Tightening torque</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B09/-B11/-B16/-B21/-C16/-C21</td>
<td>19 lb-in</td>
</tr>
<tr>
<td>EWN-B31/-C31/-C36</td>
<td>22.6 lb-in</td>
</tr>
</tbody>
</table>

Solution compatibility
This pump has been evaluated for use with water only. The suitability of this pump for use with liquids other than water, such as acid and alkaline, is the responsibility of the user. For liquids other than water, select the best-suited liquid end material combination using a chemical compatibility chart.

Compatibilité avec la solution
Cette pompe a été évaluée pour l’utilisation avec l’eau uniquement. L’aptitude de cette pompe à être utilisée avec d’autres produits, tels que les acides et les alcalins, est de la responsabilité de l’utilisateur. Pour des liquides autres que l’eau, choisissez le matériel le plus compatible selon la résistance chimique.
• Electrical work should be performed by a qualified electrician. Otherwise, personal injury or property damage could result.

Le raccordement électrique de la pompe doit être effectué par du personnel qualifié sinon, il pourrait y avoir un dommage corporel ou incorporel.

• Do not install the pump:
 – In a flammable atmosphere.
 – In a dusty/humid place.
 – In direct sunlight or wind & rain.
 – Where ambient temperature can exceed 0-40°C.

Protect the pump with a cover when installing it out of doors.

Ne pas installer la pompe dans les endroits suivants:
 – Dans une atmosphère inflammable
 – Dans une atmosphère poussiéreuse ou humide.
 – Sous les rayonnements du soleil, dans le vent ou sous la pluie.
 – La température ambiante doit être comprise entre 0 et 40°C.

Protégez la pompe par un capot si vous l’installez dehors.

• Select a level location, free from vibration, that won’t hold liquid. Anchor the pump with four M5 bolts so it doesn’t vibrate. If the pump is not installed level, output may be affected.

Choisissez un endroit où il n’y a pas de vibrations et où le liquide peut s’évacuer. Fixez la pompe à l’aide de visses M5 de façon à ne pas avoir de vibrations. Si la pompe est inclinée, le débit peut être réduit.
• When two or more pumps are installed together, vibration may be significant, resulting in poor performance or failure. Select a solid foundation (concrete) and fasten anchor bolts securely to prevent vibration during operation.

Si plusieurs pompes sont installées ensemble, elles interagissent et les vibrations peuvent devenir importantes, ce qui engendre des performances médiocres ou des ratures. Choisissez un endroit solide et fixez les boulons correctement pour évitez les vibrations pendant le fonctionnement.

• Allow sufficient space around the pump for easy access and maintenance.

Prévoyez de l’espace autour de la pompe pour faciliter l’accès et la maintenance.

• Install the pump as close to the supply tank as possible.

Installez la pompe le plus près possible du tank de produit.

• When handling liquids that generate gas bubbles (sodium hypochlorite or hydrazine solution), install the pump in a cool and dark place. Flooded suction installation is strongly recommended.

Installez la pompe dans une place froide à l’abri du soleil lorsqu’il s’agit du dosage de produits dégazant tels que l’hypochlorite de sodium ou l’hydrazine. Mettre la pompe en charge est vivement recommandé.
• Use care handling the pump. Do not drop. An impact may affect pump performance. Do not use a pump that has been damaged to avoid the risk of electrical damage or shock.

Veillez à ne pas laisser tomber la pompe sur le sol. Un impact important pourrait réduire les performances de la pompe. Ne pas utiliser une pompe endommagée sinon il pourrait y avoir un courant de fuite ou une décharge électrique.

• The pump has a rating of IP65, but is not waterproof. Do not operate the pump while wet with solution or water. Failure or injury may result. Immediately dry off the pump if it gets wet.

Le pompe est IP65 mais n'est pas complètement étanche. Ne pas laisser la pompe couverte de liquide pompé ou sous la pluie. Il pourrait y avoir des ratés ou préjudices. Si la pompe a été mouillée, sechez-la directement.

• Do not close discharge line during operation. Solution may leak or piping may break. Install a relief valve to ensure safety and prevent damaged plumbing.

Ne fermez pas la ligne de refoulement lorsque la pompe est en fonctionnement sinon il pourrait y avoir des fuites de liquide ou la tuyauterie pourrait céder. Installez une soupape de sécurité pour des raisons de sécurité et pour éviter tout dommage de la tuyauterie.

• Do not remove the control unit. Note that an applicable control unit differs with each drive unit. Do not attach a control unit to a different drive unit. Otherwise, an electrical circuit or the drive unit may fail.

N’enlevez pas l’unité de contrôle. Chaque partie électromagnétique a son propre unité de contrôle. Ne mettez pas autre unité de contrôle au module de puissance sinon il pourrait y avoir un court circuit ou un disfonctionnement de la partie électromagnétique.
• Solution in the discharge line may be under pressure. Release the pressure from the discharge line before disconnecting plumbing or disassembly of the pump to avoid solution spray.

Le liquide au refoulement peut être sous pression. Relâchez la pression du refoulement avant de démonter la pompe ou d'enlevez le tubage pour éviter tout jet de liquide.

• Wear protective clothing when handling or working with pumps. Consult solution MSDS for appropriate precautions. Do not come into contact with residual solution.

Portez un équipement de sécurité lorsque vous manipulez la pompe. Consultez le MSDS pour utiliser les précautions appropriées. Evitez tout contact avec le liquide chimique.

• Do not clean the pump or nameplate with a solvent such as benzine or thinner. This may discolour the pump or erase printing. Use a dry or damp cloth or a neutral detergent.

Ne nettoyez pas la pompe ou la plaque signalétique à l’aide d’un solvant comme le benzène ou le white spirit. Cela pourrait décolorer la pompe ou effacer l’impression. Utilisez un tissu sec ou mouillé avec de l’eau ou un détergent neutre.

• This pump has been evaluated for use with water only.

Cette pompe a été testée uniquement avec de l’eau.
Pump characteristics, features and part names are described in this section.

Introduction

Pump structure & Operating principle

The EWN-Y is a diaphragm metering pump which consists of a pump head, drive unit and control unit, and features the external and feedback control with the EFS flow sensor or other devices.

Principle of operation

The pulse signal controls the electromagnetic force and spring force in order to make reciprocating motion. The reciprocating motion is transferred to a diaphragm through a plunger and then volumetric change occurs in the pump head. This action transfers liquid along with pump head valve action.
The lower opening pressure (open air pressure) of the auto vent valves than the outlet check valves lead the entrained gas to the open air via the branched air vent route. Once all gas in the pump head is expelled, liquid starts to flow the main path to the outlet.
Features

- **Multivoltage operation**
The EWN-Y series is a multivoltage type (100-240VAC) and can be selected without concern for local power voltage.

- **IP rating of 65**
The sealed drive unit and control unit assure IP65.
*This pump is not waterproof. Protect the pump with a cover when installing it out of doors.

- **Feedback control (with the EFS flow sensor)**
Use of the EFS automatically controls a stroke rate to meet the target flow rate under any pressure fluctuation.
*This pump is not waterproof.Protect the pump with a cover when installing it out of doors.

Operational functions

Manual mode

Run/stop the pump by the start/stop key. A stroke rate (MAN speed) can be changed in the range of 0-100%/1-360spm) by the up and the down keys at any time during operation or stop. See page 74 for detail.

![Diagram showing flow rate and target rate under feedback and no feedback control](image)
EXT mode

■ Digital control

Multiplier setting

The pump operation by the external signal. Set a multiplier before operation. 1-999 shots can be allocated to one external pulse. See page 75 for detail.

*In the EXT operation, the pump runs at the MAN speed.

Example) When the multiplier is set to 5, the pump makes five shots per signal.

A buffer works when the pump receives an external pulse before the set shots per signal is completed. The buffer is active with the factory default settings.

*The buffer stores the external signals for up to 65535 shots.
Divisor setting

The pump operation by the external signal. Set a divisor before operation. 1-9999 external pulses can be allocated to make one shot.

The pump can not run over the MAN speed even if the divisor is set to run the pump beyond that speed.

Example) When the divisor is set to 5, the pump makes one shot every 5 signals.

A buffer works when the pump receives the number of external pulses that will run the pump over the MAN speed. The buffer is inactive with the factory default settings.

The buffer stores the external signals for up to 65535 shots.

■ **Analogue proportional control**

ANA. R (analogue rigid) setting

The pump increases/decreases a stroke rate in proportion to 0-20mA current input. Four preset patterns (4-20mA, 20-4mA, 0-20mA, 20-0mA) are provided. See page 77 for detail.

![Diagram](image-url)
ANA. V (analogue variable) setting

The pump increases/decreases a stroke/flow rate in proportion to 0-20mA. Determine the operational behaviour by setting two set points and choosing one of the LINE, BOX and LIMIT patterns. See page 79 for detail.

<LINE>
A stroke/flow rate changes with a current value by a set line.

\[\text{Condition:} \]
\[SP1 = 6 \text{ mA, 30\%} \]
\[SP2 = 17 \text{ mA, 85\%} \]

<BOX>
A stroke/flow rate changes with a current value by a set line. The rate does not exceed the Set Point 2 but then fall to 0 before the Set Point 1.

\[\text{Condition:} \]
\[SP1 = 6 \text{ mA, 30\%} \]
\[SP2 = 17 \text{ mA, 85\%} \]

<LIMIT>
A stroke/flow rate changes with a current value by a set line. The rate does not fall below the Set Point 1 or exceed the Set Point 2.

\[\text{Condition:} \]
\[SP1 = 6 \text{ mA, 30\%} \]
\[SP2 = 17 \text{ mA, 85\%} \]
■ Pulse proportional control

PLS (pulse) setting
The pump increases/decreases a stroke/flow rate in proportion to 0-500Hz (or 0-100Hz, user selectable). Determine the operational behaviour by setting two set points and choosing one of the LINE, BOX and LIMIT patterns. See page 82 as well.

<LINEx>
A stroke/flow rate changes with a pulse rate by a set line.

<BOXx>
A stroke/flow rate changes with a pulse rate by a set line. The rate does not exceed the Set Point 2 but then fall to 0 before the Set Point 1.
A stroke/flow rate changes with a pulse rate by a set line. The rate does not fall below the Set Point 1 or exceed the Set Point 2.

Condition:
The left graph is in the following setting.
SP1 = 100Hz, 30%
SP2 = 350Hz, 85%

PRIME mode

The pump runs at the maximum stroke rate while both the UP and DOWN keys are pressed. Use this function for degassing.
Control functions

■ STOP function
The start/stop of the pump can be controlled by external devices such as a level sensor. This function is dominated by the PRIME or AUX function.

When the "CL-ON" option is selected:
The pump stops while receiving the external signal via the STOP terminal (closed circuit).
*The pump resumes operation when the STOP signal is released.

When the "CL-OF" option is selected:
The pump runs while receiving the external signal via the STOP terminal (closed circuit).
*The pump stops operation when the STOP signal is released.

■ Pre-STOP function
When the "CL-ON" option is selected:
The STOP LED lights orange while the pump is receiving the external signal via the Pre-STOP terminal (closed circuit). Note the pump does not start or stop running.

When the "CL-OFF" option is selected:
The STOP LED stops lightening while the pump is receiving the external signal via the Pre-STOP terminal (closed circuit). Note the pump does not start or stop running.
■ **AUX function**
The pump runs at the maximum stroke rate of 360/(240/180)spm while receiving the external signal via the AUX terminal. Use this function for degassing.

![Pulse signal input diagram]

■ **Interlock function**
The start/stop of the pump can be controlled by the external signal via the input terminal. This function is dominated by the PRIME or STOP function.

Output functions

The pump has the following outputs with different functions.

■ **OUT1 (mechanical relay)**
The pump transmits the no voltage contact signal:

- **At STOP signal input**
- **At Pre-STOP signal input**
- **At Interlock signal input**
- **At Completion of the digital control with a multiplier**
- **At Completion of batch control (with the EFS flow sensor)**

When a measured flow is out of allowable range in the ANA.V or PLS control with the EFS flow sensor (FL.ER: Out of measurement alarm):

This alarm output will be stopped when the EFS measured flow returns to the allowable range (operation sustained) or when the start/stop key is pushed once (operation suspended).
When a flow falls below the preset minimum rate in operation with the EFS flow sensor (F.CHK: Poor flow alarm):
The error message of "FLOW" will appear on the pump display. It is cancelled when the start/stop key is pushed once (operation suspended).
*Do not set the minimum rate at or above the target flow rate.

■ OUT2 (photoMOS relay)
The pump transmits the no voltage contact signal:

- In synchronous with pump shots
- In synchronous with signal input from the EFS flow sensor

*The OUT1 functions can also be set to the OUT2.

■ Analogue output
The pump outputs a current value of 4-20mA in proportion to a flow/stroke rate.
Control with external devices

Combination with the EFS flow sensor

The combination of the EFS flow sensor (purchase separately) and the EWN-B11Y/-B16Y/-B21Y/-C16Y enables feedback control. Digital control with a multiplier and a divisor is not enabled while the EFS sensor is connected.

⚠️ Observe the following points.

• Use care handling the flow sensor. Do not drop or hit. An impact may affect sensor performance.
• Do not modify the flow sensor. Alterations to the flow sensor carries a high degree of risk. It is not the manufacturer's responsibility for any failure or injury resulting from alterations to the flow sensor.
• Use liquid conductivity of 1000mS/m or more.
• The use of the flow sensor in any conditions other than those clearly specified may result in failure or injury. Use this product in specified conditions only.
• Do not install/store the sensor in a flammable atmosphere.
• Do not use a corrosive solution.
• Use measures to keep the flow sensor connections free from stress. Weight and thermal expansion/contraction of the piping can stress connection points.
• Non-freezing. Do not allow liquid temperature to fall below its freezing point.
• The flow sensor does not work for 20 seconds after power-on. Avoid on-off operation by powering on/off the pump.
• Do not expose the sensor to direct sunlight or heat.
• Malfunction may result. Do not close the sensor to a strong magnet or use in a magnetic field.
• It takes about 30 minutes after the start of the pump for a dry EFS to get ready for measurement. An accurate flow can not be obtained during this time period (running-in period).
• Rinse the flow path with tap water to clean electrode as necessary.
Feedback control (see page 99)

In the feedback control with the EFS sensor, the pump automatically controls the stroke rate to meet the target flow rate. Call up the manual mode (the pump stops) and use the DISP key to select the "GPH", "L/h" or "mL/m" flow unit. Set a target rate and then push the start/stop key. The feedback control will be started based on the actual flow measured by the EFS sensor.

*The pump controls a stroke rate in the range of 0-360(240/180)spm. The flow rate changes with a stroke rate and discharge pressure.
Batch control (see page 100)
When the EFS sensor is used with the pump, the batch control becomes available. In the batch control, the pump runs until the set volume per pulse that is monitored by the EFS is completed and stops afterwards. The batch volume shown on the pump screen is getting lower as feeding advances.
*In the batch control, the pump runs at the MAN speed.
*If the EXT key is pushed or the batch S/S signal is entered before the pump has completed feeding, the batch volume returns to the origin.
When "bF-ON (buffer ON)" is selected:
A set volume doubles in dosing if the pump receives an external pulse signal via the analogue/pulse input terminal or the INPUT terminal (see page 50 for their wiring diagrams.). Either terminal can be used, however, when using the INPUT terminal, choose the "INPUT", "INP.T" and then "PULS" options in the user mode.
Combination with the FCP and FCM flow checker/counter

The FCP-1 VC/VE/PC/PE flow counter and the FCM-VC-1/-2 or FCM-VH-1/-2 flow checker detect each pulsation flow from the pump and feed back pulse signals to the pump. The pump recognizes upset conditions when the feedback signals does not match the number of pump shots. The following four behavioral patterns are available.

■ A. MODE

The pump stops running and outputs an alarm via the OUT1 terminal with the "FLOW" and "Err" displays on the pump screen when the pump does not receive a feedback signal from the FCP/FCM for the set number of shots. Push the start/stop key to release this error condition.

*FC.MUM: Number of dry shots user settable in the user mode

When the FC.MUM is set to 10:

- Pump operation
 - Feedback signal
 - OUT1
B. MODE

The pump outputs an alarm via the OUT1 terminal, keeping its operation, when the pump does not receive a feedback signal from the FCP/FCM for the 1st set number of shots (FC.MUM: Number of dry shots). The pump stops running with the "FLOW" and "Err" displays on the pump screen when the pump continues not receiving a further signal for the 2nd set number of shots (FC.POF: Dry shots to pump off). Push the start/stop key to release this error condition.

When the FC.MUM is set to 10 and the FC.POF to 30:

<No feedback signal recovery>
The pump stops running when not receiving a feedback signal for further 30 shots (FC.POF) after 10 dry shots (FC.MUM) has been made.

<Feedback signal recovery>
The pump keeps running when receiving a feedback signal within 30 shots (FC.POF) after 10 dry shots (FC.MUM) has been made.
C. MODE

The pump stops running with the "FLOW" and "Err" displays on the pump screen, outputting an alarm via the OUT1 terminal when not receiving a feedback signal from the FCP/FCM for the set number of dry shots (FC.MUM: Number of dry shots) plus the set number of shots (FC.POF: Dry shots to pump off).

Push the start/stop key to release this error condition.

When the FC.MUM is set to 10 and FC.POF to 30:

- Pump operation
- Feedback signal

START

STOP

OUT1
D. MODE

The pump continues running at a MAN speed for the 1st set time (FC.TIM: Detection time) and then a maximum speed for the 2nd set time (FC.PRM: Priming time). The pump stops running with the "FLOW" and "Err" displays on the pump screen, outputting an alarm via the OUT1 terminal when not receiving a feedback signal from the FCP/FCM over the return time (FC.RTN: Return time). The pump speed return to the MAN speed after the Priming time if it receives a signal over the return time.

When the FC.TIM is set to 2min, FC.PRM to 5min and FC.RTN to 30sec:

<No feedback signal recovery>

<Feedback signal recovery>
Part names

Overview

Pump

- **Control unit**
 - Used for the start/stop of the pump and stroke rate adjustment/setting.

- **Adjusting screw**
 - Used for opening the air vent port.

- **Air vent port**
 - Always connect a tube. Be sure to return the tube end to a supply tank or a container. The air vent port can rotate 90 degrees.

- **Outlet**

- **Air vent body**

- **Inlet**

- **Nameplate**
 - Describes the pump specifications.

- **Pump head**

- **Base**
 - Always fix with bolts.
Operational panel

- **START/STOP key**
 Used for starting/stopping operation or entering a setting.

- **EXT key**
 Used for entering the EXT mode.

- **Display**
 An operational status, a selected mode and a set value are shown here.

- **UP key**
 Used for increasing numeric values or selecting a setting mode.

- **DOWN key**
 Used for decreasing numeric values or selecting a setting mode.

- **DISP key**
 Used for changing units.

- **OUT LED**
 Lights red as the pump outputs the signal.

- **STOP LED**
 Lights red as the pump stops running by the STOP signal.
 Lights orange as the pump keeps running while receiving the Pre-STOP signal.

- **ON LED**
 Lights orange as turning on power.
 The LED lights green and flashes at each stroke.

- **STROKE LENGTH**
 Stroke length knob
 Determines liquid volume per shot.
Basic displays & Pump states

Main character field

Operation mode

Calibration mode

Units

Operation setting

Measured flow display by the EFS flow sensor

Error condition

Keypad lock

Setting layer 1/2 and OUT1/2

A buffer stores excessive signals.

Part names

STOP LED lights green

ON LED lights orange

ON LED blinks green

OUT LED lights red

<table>
<thead>
<tr>
<th>STOP LED lights green</th>
<th>ON LED lights orange</th>
<th>ON LED blinks green</th>
<th>OUT LED lights red</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>—</td>
<td>—</td>
<td>OUT1 & 2 activate as preset.</td>
</tr>
<tr>
<td>MAN 100.0%</td>
<td>—</td>
<td>—</td>
<td>OUT1 & 2 activate as preset.</td>
</tr>
<tr>
<td>MAN 370 mL/h</td>
<td>—</td>
<td>—</td>
<td>OUT1 & 2 activate as preset.</td>
</tr>
<tr>
<td>STOP</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PGE XT</td>
<td>—</td>
<td>EXT mode setting in the user mode.</td>
<td>—</td>
</tr>
<tr>
<td>Err</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The backlit LCD stops lightening 1 minutes after the last key operation.
Identification codes

The model codes of the pump/drive units and the control unit represent the following information.

Pump/Drive units

EWN - B 11 VC ___ U Y ___ - ___

a. Series name
 EWN: Multivoltage electromagnetic metering pump

b. Drive unit (average power consumption)
 B: 20W C: 24W

c. Diaphragm effective diameter
 09: 8mm 11: 10mm 16: 15mm
 21: 20mm 31: 30mm 36: 35mm

d. Wet end materials

<table>
<thead>
<tr>
<th>Code</th>
<th>Pump head</th>
<th>Valve</th>
<th>O ring</th>
<th>Valve seat</th>
<th>Gasket</th>
<th>Diaphragm</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>PVC</td>
<td>CE</td>
<td>FKM</td>
<td>FKM</td>
<td></td>
<td>PTFE + EPDM (dry end)</td>
</tr>
<tr>
<td>VH</td>
<td>PVC</td>
<td>HC276</td>
<td>EPDM</td>
<td>EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE</td>
<td>GFRPP</td>
<td>CE</td>
<td>FKM</td>
<td>FKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>GFRPP</td>
<td>HC276</td>
<td>EPDM</td>
<td>EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>GFRPP</td>
<td>CE</td>
<td>FKM</td>
<td>FKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>GFRPP</td>
<td>CE</td>
<td>FKM</td>
<td>FKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>PVDF</td>
<td>CE</td>
<td>FKM</td>
<td>FKM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>PVC</td>
<td>HC276</td>
<td>EPDM</td>
<td>EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>SUS316</td>
<td>HC276</td>
<td>—</td>
<td>SUS316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6-V</td>
<td>PVC</td>
<td>SUS316</td>
<td>EPDM</td>
<td>PCTFE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Automatic air vent (auto degassing type)

<table>
<thead>
<tr>
<th>Code</th>
<th>Air vent valve guide A</th>
<th>Air vent valve guide B</th>
<th>Valve</th>
<th>Separate pin</th>
<th>Valve seat</th>
<th>O ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>PVC</td>
<td>PVC</td>
<td>Zirconia ceramic</td>
<td>Titanium</td>
<td>FKM</td>
<td>FKM</td>
</tr>
<tr>
<td>VH</td>
<td>PVC</td>
<td>PVC</td>
<td>HC276</td>
<td>HC276</td>
<td>EPDM</td>
<td>EPDM</td>
</tr>
</tbody>
</table>

Material code

PVC: Transparent polyvinyl chloride GFRPP: Glassfiber-reinforced polypropylene
PVDF: Polyvinylidene difluoride EPDM: Ethylene-propylene rubber
FKM: Fluorine-contained rubber PTFE: Polytetrafluoroethylene
HC276: HASTELLOY C276 SUS316: Austenite stainless steel
CE: Alumina ceramic PCTFE: Polymonochlorotrifluoroethylene
Overview

Identification codes

- **No.**
- **Tube ID×OD**
- **Wet end materials**
- **Pump model**

<table>
<thead>
<tr>
<th>No.</th>
<th>Tube ID×OD</th>
<th>Wet end materials</th>
<th>Pump model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ø1/4"×ø3/8"</td>
<td>VC/VH/VE/PC/PH/PE/TC/VC-C/VH-C/VE-C/VC-A/VH-A</td>
<td>EWN-09/-11/-16/-21</td>
</tr>
<tr>
<td>2</td>
<td>ø3/8"×ø1/2"</td>
<td>VC/VH/VE/PC/PH/PE/TC</td>
<td>EWN-31/-36</td>
</tr>
<tr>
<td>3</td>
<td>1/4-18NPT</td>
<td>FC/SH/SH-H</td>
<td>EWN-11/-16/-21/-31/-36</td>
</tr>
<tr>
<td>4</td>
<td>ø15×ø22</td>
<td></td>
<td>P6-V</td>
</tr>
<tr>
<td>5</td>
<td>ø3/8"×ø1/2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ø4×ø9</td>
<td>VC/VH/VE/PC/PH/PE/VC-C/VH-C/VE-C/VC-A/VH-A</td>
<td>EWN-09/-11/-16/-21</td>
</tr>
<tr>
<td>7</td>
<td>ø4×ø6</td>
<td>VC/VH/VE/PC/PH/PE/VC-C/VH-C/VE-C/VC-A/VH-A</td>
<td>EWN-09/-11/-16/-21</td>
</tr>
<tr>
<td>8</td>
<td>ø6×ø8</td>
<td>VC/VH/VE/PC/PH/PE/VC-C/VH-C/VE-C/VC-A/VH-A</td>
<td>EWN-09/-11/-16/-21</td>
</tr>
<tr>
<td>9</td>
<td>ø8×ø13</td>
<td>VC/VH/VE/PC/PH/PE</td>
<td>EWN-31/-36</td>
</tr>
<tr>
<td>10</td>
<td>ø9×ø12</td>
<td>VC/VH/VE/PC/PH/PE</td>
<td>EWN-31/-36</td>
</tr>
<tr>
<td>11</td>
<td>ø10×ø12</td>
<td>VC/VH/VE/PC/PH/PE/TC</td>
<td>EWN-31/-36</td>
</tr>
<tr>
<td>12</td>
<td>ø6×ø12</td>
<td>VC/VC-C</td>
<td>EWN-09/-11/-16/-21</td>
</tr>
<tr>
<td>13</td>
<td>ø5×ø8</td>
<td>VC/TC/VC-C</td>
<td>EWN-09/-11/-16/-21</td>
</tr>
<tr>
<td>14</td>
<td>ø4×ø9</td>
<td>PC-H/PH-H/PE-H</td>
<td>EWN-11/-16</td>
</tr>
<tr>
<td>15</td>
<td>ø4×ø6</td>
<td>PC-H/PH-H/PE-H</td>
<td>EWN-11/-16</td>
</tr>
<tr>
<td>16</td>
<td>ø6×ø8</td>
<td>PC-H/PH-H/PE-H</td>
<td>EWN-11/-16</td>
</tr>
</tbody>
</table>

The VC/VH-C wet ends are available only for the EWN-09 type.

f. Power cable

- **U:** American 115VAC type
- **U2:** American 230VAC type

g. Control unit function

- **Y:** High functional

h. Special version

- **C:** High compression type
- **H:** High pressure type
- **V:** High viscosity type
- **A:** Auto degassing type

i. Special configuration
Installation

This section describes the installation of the pump, tubing and wiring. Read through this section before work.

⚠️ Observe the following points when installing the pump.

- Risk of electrical shock. Be sure to turn off power to stop the pump and related devices before service is performed.
- If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems.
- Do not place explosive or flammable material near the pump.
- Do not use a damaged pump. Use of a damaged pump could lead to an electric shock or death.
- If the EFS flow sensor is needed, first mount the sensor before plumbing the pump. Use supports to hold plumbing and the pump as necessary.

Pump mounting

Select an installation location and mount the pump.

Necessary tools

- Four M5 bolts (pump mounting)
- Adjustable wrench or spanner

1. **Select a suitable place.**
 Always select a flat floor free of vibration. See page 14 for detail. Flooded suction is recommended when handling a gaseous liquid such as sodium hypochlorite.

2. **Anchor the pump with the M5 bolts.**
 Be sure to fix the pump at four points.

 NOTE
 Select a level location. If the pump is not installed level, output may be affected.
Plumbing

Connect tubes to the pump and install a check valve.

Before operation

- Cut the tube ends flat.

Necessary tools

- An adjustable wrench or a spanner

Tube connection

a. Pass a tube into the fitting nut and stopper and then slide it down to the adapter as far as it will go.
b. Put the tube end (adapter) in the fitting. Then hand tighten the fitting nut.
c. Retighten the fitting nut by turning it further 180 degrees with an adjustable wrench or spanner (crush tube mount).

* Do not use excessive force to the plastic fitting nut.
* In your try to remove the connection, the adapter may be stuck in the crushed tube and the stopper. Try not to damage the taper of the adapter that is crushing the tube against the stopper. If it has been damaged, contact us for the new adapter/stopper.
* Do not reuse the same tube end for the crush sealing. Cut it off for ensuring the new seal is established.
1. Connect tubes into the inlet and outlet.

2. Connect an air bleed tube into the air vent port.
 Route back the other tube end to a supply tank or a container.

3. Determine an air vent port direction.
 The air vent port can rotate 90 degrees.
 a. Turn the lock nut anticlockwise.
 b. Adjust the direction of the air vent port.
 c. Hand-tighten the lock nut, holding the air vent body A.
 d. Turn the lock nut 90 degrees clockwise further with an adjustable wrench or spanner.
Check valve mounting

Install an optional check valve to the EWN for the prevention of a back flow, siphon and overfeeding. In the following cases be sure to install the check valve.

- A suction side liquid level is higher than a discharge side or an injection point at atmospheric pressure.

- A discharge side liquid level is higher than a suction side but the distance is 5m or below.

- A suction line pressure is higher than a discharge line pressure.

- A discharge pressure (including pipe resistance and discharge head) is below 0.13MPa. (below 0.049MPa for B31 and C36).
1. **Mount a check valve at the discharge tube end.**

 The CAN check valve has R1/2 and R3/8 thread connections as well as an O.D. 9 mm tube connection. Cut off an unused part and adjust the connection length as necessary.

 CAN check valve

 ![Check Valve Diagram](image)

 The CBN check valve (both ends tube connections) is optionally available. Contact us or your nearest distributor.

 CBN check valve

 ![Check Valve Diagram](image)

NOTE

- Periodically clean or replace a check valve with new one for the prevention of crystal clogging, especially when using sodium hypochlorite.
- In the nature of the pump, the lower discharge pressure, the higher discharge capacity (and vice versa). If you want to observe the max discharge capacity at any low level of system (discharge) pressure, use the check/back pressure valve to give the additional pressure of 0.17MPa±0.04 to the discharge line or reduce the pump speed/stroke length.

Tubing layout

Flooded suction application

![Tubing Diagram](image)

Suction lift application

![Tubing Diagram](image)

NOTE

- Flooded suction installation is strongly recommended when handling liquids that generate gas bubbles (sodium hypochlorite or hydrazine solution).
- Install a relief valve on a discharge line near the pump so as to release the discharge pressure when it exceeds the maximum level.
Wiring (pump)

Wiring for a power voltage and an external signal.

⚠️ Observe the following points during wiring work.

- Electrical work should be performed by a qualified electrician. Always observe applicable codes or regulations.
- Observe the rated voltage range, or the electrical circuit in the control unit may fail.
- Risk of electrical shock. Be sure to turn off power to stop the pump and related devices before service is performed.
- Replacement of a power cable should be conducted by a manufacturer, his agency or a skilled person. Otherwise, an accident may result.

Necessary tools

- Adjustable wrench or spanner
- Precision screw driver
- Phillips screw driver
- Flathead screw driver
End terminals

See the following diagram for detail.

![Diagram of pump terminals]

STOP terminal

Output terminal

Input terminal

Sensor signal

Power voltage/Earthing

Points to be checked

• Check that the main power is turned off.

1 Connect the power cable to the 100-240VAC power source.

This product have two power wires and one earth wire, and is classified as class I.

*Make sure the earth plug is seated securely as well.
NOTE

• Do not share a power source with a high power device which may generate surge voltage. Otherwise an electronic circuit may fail. The noise caused by an inverter also affects the circuit.

• Energize the pump with a power voltage via a mechanical relay or switch. Do not fluctuate the voltage, or CPU may malfunction. See page 50 for the precautions for ON-OFF control by a mechanical relay.

Apply power sharply

Do not apply gradually

Surge voltage
The electronic circuit in the control unit may fail due to surge voltage. Do not place the pump close to a high power device of 200V or more which may generate large surge voltage. Otherwise, take any of the following measures.

• Install a surge absorption element (ex. a varister with capacity of 2000A or more) via power cable.

Surge absorption element

Recommended varisters
Panasonic ERZV14D431
KOA NVD14UCD430
See manufacturer's catalogues for detail.

• Install a noise cut transformer via power cable.

Noise cut transformer
Precautions for ON-OFF control by a mechanical relay
The pump is equipped with a CPU. To ensure the CPU to work properly, always start/stop the pump by the STOP signal for ON-OFF control. Try not to turn on and off the main power. Otherwise, observe the following points:

• Ensure the minimum OFF time of 10 minutes.
• The contact capacity of a mechanical relay should be 5A or more. Or a contact point may break.
• If the contact capacity of a mechanical relay is 5A, the maximum allowable number of times the power is turned ON/OFF is limited to 150,000. Use the contact capacity of 10A or more when the actual number of times is over 150,000 or when sharing a power source with a large capacity equipment which may cause a surge voltage and damage a contact point.
• Use a solid state relay (SSR) as necessary (such as the OMRON G3F). See manufacturer's catalogues for detail.
• The EFS does not work for 20 seconds after power-on. Do not cycle the pump power for ensuring proper EFS operation.

Signal wire connection
Use the DIN 4- or 5-pin female connector cable. We recommend the use of Binder connector cables (German manufacturer). Contact us for detail.

Binder connector cables
5-pin : 713 series 99-0436-10-05 Input signal
4-pin : 715 series 99-0430-15-04 STOP signal

Hirschmann square connector cables
4-pin : GDS307 Output signal

Points to be checked
• Check that the main power is turned off.
NOTE

• Do not lay on these signal cables in parallel with a power cable. Otherwise the electromagnetic induction noise is generated and malfunction or failure may result.
• The following products are the recommended SSRs (Solid State Relays) for signal input. Any other SSRs may cause malfunction. See manufacturer's information for details on these SSRs.
 – OMRON G3FD-102S or G3FD-102SN
 – OMRON G3TA-IDZR02S or G3TA-IDZR02SM
• When using a mechanical relay for signal input, its minimum application load should be 1mA or below.
• Insert the DIN connector as far as it will go and then rotate the outer ring to fix it.
• Use either a no-voltage contact or an open collector for the STOP and Input signals.

■ STOP signal
Connect signal wires to the STOP terminal via a DIN 4-pin connector.

• **When using an open collector:**
 Pay attention to polarity. Pre-STOP and STOP are plus(+), and COM is minus(-).

• **When using a contact:**
The contact must be designed for an electronic circuit. The minimum application load should be 1mA or less.

![Wiring Diagram]

1 : STOP (Brown)
2 : Pre-STOP (White)
3 : COM (Blue)
4 : COM (Black)

*Each terminal is coloured as above for our optional cable.

NOTE
Our 5m cable is 5-wire. Cut off a green wire to use it with the DIN 4-pin connector.
Input signal
Connect signal wires to the input terminal via a DIN 5-pin connector for digital/analogue-proportional control, interlock/AUX input or analogue signal output.

- **When using an open collector:**
 Pay attention to polarity. PIN 1 and PIN 3 are plus(+), and PIN 4 is minus(-).

- **When using a contact:**
The contact should be designed for an electronic circuit. The minimum application load should be 1mA or less.

NOTE
If electric terminals of an external electrical component share a common (ground) line, the analogue out minus pin 2 and the common pin 4 of the input terminal cannot be used at the same time unless a measure is taken.

When using the Analogue/Pulse input function or the INPUT function which uses the pin 4 together with the Analogue out function which uses the pin 2, an isolator must be installed in either signal line of those functions.

Output signal
Connect signal wires to the OUT terminal via a DIN 4-pin connector.

- **OUT1**<Mechanical relay>: Alarm output
 *The "1.STOP(STOP alarm)" is enabled with the factory default settings.

- **OUT2**<PhotoMOS relay>: Alarm output or Synchronous output (sensor/pump).
 *The "OFF" is selected to the OUT 2 terminal with the factory default settings.
Wiring (external devices)

EFS flow sensor mounting (purchase separately)

⚠️ Observe the following points

- Mount the EFS flow sensor before anchoring/plumbing the pump.
- Be sure to power off the pump before connecting the DIN cable.
- Use care handling the EFS flow sensor. Do not drop or hit. An impact may affect performance.

Necessary tools

- Adjustable wrench or spanner

1. Turn the lock nut anticlockwise by an adjustable wrench and remove the air vent body A.
2 **Mount the EFS flow sensor.**

a. Hand-tighten the lock nut, holding the flow sensor.

b. Turn the lock nut 90 degrees clockwise further with an adjustable wrench or spanner.

NOTE

- Foreign matters and a nonconductive liquid prevent the EFS from monitoring a flow rate. Be sure to remove these factors before mounting the EFS.
- Fasten the EFS onto the outlet of the pump head to 3.43 N•m. Excessive tightening torque may break a connection. Clean a sealing surface and replace an O ring as necessary.

3 **Mount the air vent body A.**

a. Hand-tighten the lock nut, holding the air vent body A.

b. Turn the lock nut 90 degrees clockwise further with an adjustable wrench or spanner.
4 Connect the sensor cable to the sensor signal terminal.

NOTE

- Connect the sensor cable to the pump after mounting the EFS flow sensor, or the cable may be damaged.
- Do not pull the sensor cable.
- Do not disassemble or alter the DIN 5-pin connector, or the EFS flow sensor may break.
- Insert the DIN 5-pin connector as far as it will go and then rotate the outer ring to fix it.
- Do not connect the sensor cable to the pump while wet with solution or water.
- Turn on the pump with the EFS flow sensor and check if "EFS.." shows up on the screen for 20 seconds. If not turn off power once and reconnect the flow sensor.
FCP/FCM mounting (purchase separately)

See each instruction manual of the FCP flow counter and FCM flow checker for detail.

- **Flow counter (FCP)**

1. Remove the adjusting screw and install the FCP flow counter instead.

- **Flow checker (FCM)**

1. Remove the fitting and take out the valve set from the pump head.

2. Place the valve set into the air vent body B and tighten it into the pump head to 3.5N\(\cdot\)m through the Lock nut.

NOTE
Note the air vent valve set has a mounting direction.
3 Connect the flow checker body and the pump head with the Lock nut. Turn the Lock nut anticlockwise to tighten them. Take care not to drop the Plate, O ring or Float. Note that the Float has a mounting direction. Install the float into the body with a red-marked face upwards.

■ FCP/FCM wiring

1 Connect the lead wire of the FCP/FCM to the DIN 5-pin connector as shown below.

2 Fit the connector to the sensor signal terminal.
Operation

This section describes pump operation and setting. Run the pump after pipework and wiring is completed.

Before operation

Check a flow rate, tubing and wiring. And then perform degassing and flow rate adjustment before starting operation.

Points to be checked

Before operation, check if:

• Liquid level in a supply tank is enough.
• Tubing is securely connected and is free from leakage and clogging.
• Discharge/suction valves are opened.
• A power voltage is in the allowable range.
• Electrical wiring is correct and is free from the risk of short circuit and electrical leakage.

Retightening of pump head fixing bolts

Important

The pump head fixing bolts may loosen when plastic parts creep due to temperature change in storage or in transit, and this can lead to leakage. Be sure to retighten the bolts evenly to the specified tightening torque below in diagonal order before starting operation.

Tightening torque

<table>
<thead>
<tr>
<th>Model code</th>
<th>Torque</th>
<th>Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B09/-B11/-B16/-B21</td>
<td>19 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-B31</td>
<td>22.6 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C16/-C21</td>
<td>19 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C31</td>
<td>22.6 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C36</td>
<td>22.6 lb-in</td>
<td>M5 Hex. socket head bolt</td>
</tr>
</tbody>
</table>

*Tighten fixing bolts once every three months.
Use of hexagon wrench instead of a torque wrench

Fasten the fixing bolts as tight as can be by the hand with the straight long part of a hexagon wrench (a) and further turn the bolts clockwise 90 degrees with the short part (b).

Stroke rate adjustment

A stroke rate increases/decreases as pushing the UP/DOWN keys. Press and hold either key for three seconds for quick change. Quick change stops at the top or bottom rate. The top/(bottom) rate skips to the bottom/(top) when the key is released and pushed once.
Degassing

The gas needs to be expelled from the pump and tubing by degassing. Normal performance can not be obtained with gas in the pump. Conduct degassing in the following cases.

- When the pump starts to run for the first time
- When a flow rate is too low
- After liquid is replaced in a supply tank
- After a long period of stoppage
- After maintenance and inspection

NOTE

- Both gas and chemical come out together through an air bleed tube. Place the end of the tube in a supply tank or a container.
- Some chemicals may cause skin trouble or damage component parts. When your hand or component parts get wet with chemical liquid, wipe off immediately.

Points to be checked

- An air bleed tube is connected to the pump.

EWN VC/VH/PC/PH/TC/PP/SH

1. Turn on power.

The ON LED lights and a display related to the current mode appears on the screen.

The pump waits in the MAN mode when the power is turned ON with a default setting or calls up the last selected mode with other settings.

A push of any keypad lightens the backlit LCD. The LCD stops lightening 1 minute after the last key operation.
Run the pump at the maximum stroke rate.
Select a convenient way from the following.

- Set a stroke rate to the top and push the start/stop key.

*Push the start/stop key to return to the MAN mode from the EXT mode as necessary.
*A flow rate accompanied with "GPH", "L/h" or "mL/m" unit is a target flow rate of the feedback control with the EFS flow sensor. Change those units to "%" or "spm" before the MAN operation.

- Enter the external signal via the AUX terminals. See page 27.

- Press and hold both the UP and DOWN keys.

Rotate the adjusting screw two revolutions anticlockwise to open the air vent port.
*Do not rotate it three revolutions. Otherwise, the adjusting screw may come off with solution spray.
Keep the pump running for more than ten minutes for degassing.

Stop the pump by:
• pushing the start/stop key once or
• stopping the AUX signal or
• releasing the UP and DOWN keys

Rotate the adjusting screw clockwise to close the air vent port.

Check liquid is delivered to the discharge line.
*Degassing is required again if the pump does not discharge liquid.

Check connections for leakage.
Degassing has now been completed.

EWN FC/P6-V
Install an air vent valve on a discharge line for degassing. Follow the procedure below to conduct degassing if the air vent valve is not available.

1. **Connect a discharge tube and route back the other tube end to a supply tank or a container.**
 Remove the check valve from the discharge tube if it is installed.
 After liquid replacement in a supply tank or a long period of stoppage, an internal pressure may remain in the pump or tubing. Removing the check valve at this state, liquid may gush out. Wrap a waste cloth around the check valve connection for the prevention of gushing.

2. **Turn on power.**
The ON LED lights and a display related to the current mode appears on the screen.
3 Run the pump at the maximum stroke rate.
 Select a convenient way from the following.
 • Set a stroke rate to the top and push the start/stop key.
 • Enter the external signal via the AUX terminals.
 • Press and hold both the UP and DOWN keys.

4 Keep the pump running for more than ten minutes for degassing.

5 Stop the pump by:
 • pushing the start/stop key once or
 • stopping the AUX signal or
 • releasing the UP and DOWN keys

6 Check liquid is delivered to the discharge line.
 *Degassing is required again if the pump does not discharge liquid.

7 Check connections for leakage.
 Degassing has now been completed.
Flow rate adjustment

A flow rate can be adjusted by adjusting a stroke rate and stroke length.

The stroke rate is indicated in spm or %. 100% stroke rate means the maximum spm. Stroke rate adjustment is a main way to adjust a flow rate.

Stroke length is the moving distance of the plunger.
A liquid volume per shot can be controlled by changing stroke length. The widest moving distance is defined as 100% stroke length.

First adjust a flow rate by stroke rate adjustment. Use stroke length adjustment for the range where stroke rate adjustment can not reach.
Determine a suitable stroke rate and a stroke length, taking account of operating conditions and liquid characteristics.

The following procedure is recommended.

1. **Change a stroke rate with stroke length 100% to adjust a flow rate.**
 See the "Stroke rate adjustment" section (page 65) and the "Stroke length adjustment" section (page 66) for detail.

2. **Measure a flow rate.**

3. **If a flow rate is lower than a specified level, increase a stroke rate and measure the flow again.**

4. **Change a stroke length for fine adjustment.**

5. **Measure the flow again to see the specified level is obtained.**
Flow rate, stroke rate and stroke length

B type

<table>
<thead>
<tr>
<th>Stroke length adjustment %</th>
<th>Discharge capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

C type

<table>
<thead>
<tr>
<th>Stroke length adjustment %</th>
<th>Discharge capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Precautions of flow rate adjustment

• When back pressure is high
 Set stroke length to 100% and adjust a flow by changing a stroke rate.

• When a flow rate per shot greatly influences the reaction in neutralization or titration application
 Shorten a stroke length to reduce a flow rate per shot. And then adjust a flow by changing a stroke rate.

• When pumping gaseous liquid such as sodium hypochlorite (NaClO) and hydrazine solution (N₂H₂O₂)
 Set a stroke length to 100% and adjust a flow by changing stroke rate.
 Note air lock may occur when stroke length is set too short.

■ Stroke rate adjustment

A stroke rate can be set by keypad operation from 0.1 to 100%. The relation between a flow rate* and a stroke rate is shown as below.

*The flow rate described on the nameplate is at 100%.

1 Turn on power and call up manual mode.

Enter manual mode to indicate a stroke rate on the screen.
• Push the start/stop key when the pump is in the EXT mode.
• When the "STOP" or "-STOP" display appears on the screen, see page 92 and 93 to release the condition.
2 Use the UP or DOWN key to adjust a stroke rate.

3 Push the start/stop key.
 The ON LED blinks at each shot during operation.

■ Stroke length adjustment
 A stroke length can be adjusted when the moving distance of the plunger is changed by the stroke length knob.
 The stroke length adjustment range is 50-100% for the B type, 40-100% for C type. The relation between a flow rate* and a stroke length is shown right.

NOTE
 Do not rotate the stroke length knob when the pump is not running.

1 Turn on power and push the start/stop key to run the pump.
 The ON LED blinks during operation.
2 Rotate the stroke length knob to determine liquid volume per shot.

Operation

■ Flow calibration
Entering liquid volume per shot, operation can be monitored in GPH, L/h or mL/m.

1 Press and hold the DISP key for 3 seconds to move from the wait state to the calibration mode.
The screen shows "TEST".

2 Run the pump.
Use a calibration cylinder to collect liquid. The pump runs for 10 seconds.
Enter the collected liquid volume. Use the UP and DOWN keys to adjust a value and the DISP key shift to the next digit. Push the start/stop key to enter the value.
*Pushing the EXT key, the setting is cancelled.

Before a long period of stoppage (one month or more)

Clean wet ends and the inside of tubing.
- Run the pump with clean water for about 30 minutes to rinse chemicals off.

Before unplugging the pump
- Always stop the pump by key operation and wait for three seconds before unplugging the pump. Otherwise, the last key operation may not be put in memory. In this case the pump unintentionally starts to run as powered on, discharging liquid.

When the pump does not transfer liquid at resuming operation.
- Clean the valve sets and remove foreign matters.
- If gas is in the pump head, expel gas and readjust a flow rate. See the "De-gassing" section on page 60.
Operation programming

Operation at each mode is individually set and controlled by keypad operation. Select a proper mode to make optimal operation.

Default setting and setting range

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Setting ranges</th>
<th>STEP*</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow unit selection</td>
<td>%</td>
<td>0.1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>spm</td>
<td>1</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td>0.317</td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td>1.200</td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td>20.0</td>
</tr>
<tr>
<td>Stroke rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%, spm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>MULT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%, spm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>ANA.R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP1 mA</td>
<td>0.1</td>
<td>0.0 mA</td>
</tr>
<tr>
<td></td>
<td>spm</td>
<td>1</td>
<td>360 spm</td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td>0.600 GPH</td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td>2.268 L/h</td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td>38.0 mL/m</td>
</tr>
<tr>
<td>ANA.V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP1 mA</td>
<td>0.1</td>
<td>20.0 mA</td>
</tr>
<tr>
<td></td>
<td>spm</td>
<td>1</td>
<td>360 spm</td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td>0.600 GPH</td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td>2.268 L/h</td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td>38.0 mL/m</td>
</tr>
<tr>
<td>EXT mode selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP1 Hz</td>
<td>0.1</td>
<td>0.0 Hz</td>
</tr>
<tr>
<td></td>
<td>spm</td>
<td>1</td>
<td>360 spm</td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td>0.600 GPH</td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td>2.268 L/h</td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td>38.0 mL/m</td>
</tr>
<tr>
<td>PLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP1 Hz</td>
<td>0.1</td>
<td>500.0 Hz</td>
</tr>
<tr>
<td></td>
<td>spm</td>
<td>1</td>
<td>360 spm</td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td>0.600 GPH</td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td>2.268 L/h</td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td>38.0 mL/m</td>
</tr>
<tr>
<td>BATCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPH</td>
<td>0.001</td>
<td>0.026 G</td>
</tr>
<tr>
<td></td>
<td>L/h</td>
<td>0.001</td>
<td>0.100 L</td>
</tr>
<tr>
<td></td>
<td>mL/m</td>
<td>0.1</td>
<td>100 mL</td>
</tr>
<tr>
<td>Parameters</td>
<td>Setting ranges</td>
<td>STEP*1</td>
<td>Default</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>PG.EXT (EXT mode setting)</td>
<td>With EFS flow sensor: ANA.R/V, PLS, BATCH</td>
<td>-</td>
<td>ANA.R</td>
</tr>
<tr>
<td></td>
<td>With no EFS flow sensor: DIV, MULT, ANA.R/V, PLS</td>
<td>-</td>
<td>DIV</td>
</tr>
<tr>
<td>DIV, MULT or BATCH in EXT mode selection</td>
<td>bF-OF/bF-ON</td>
<td>-</td>
<td>bF-OF/MULT/bF-OF/MULT</td>
</tr>
<tr>
<td>ANA.R or ANA.V in EXT mode selection</td>
<td>ANA.R/V</td>
<td>-</td>
<td>ANA-R</td>
</tr>
<tr>
<td>ANA.V is selected in user mode</td>
<td>LINE/BOX/LIMIT</td>
<td>-</td>
<td>LINE</td>
</tr>
<tr>
<td>PLS in EXT mode selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RANGE</td>
<td>500/100</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>CURVE</td>
<td>LINE/BOX/LIMIT</td>
<td>LINE</td>
</tr>
<tr>
<td>OUT1 (OUT1 selection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.OUT.T</td>
<td>1.ALM/1.FR.ER/1.F.CHK/1.OFF</td>
<td>-</td>
<td>1.ALM</td>
</tr>
<tr>
<td>1.STOP</td>
<td>(STOP alarm)</td>
<td>ON/OFF</td>
<td>ON</td>
</tr>
<tr>
<td>1.P.STP</td>
<td>(Pre-STOP alarm)</td>
<td>ON/OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1.I.LOC</td>
<td>(Interlock alarm)</td>
<td>ON/OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1.COMP</td>
<td>(BATCH/MULT completion)</td>
<td>ON/OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1.FLOW</td>
<td>0.1 - 999.9 mL/m (0.006 - 59.994 L/h) (0.001 - 15.828 GPH)</td>
<td>0.1</td>
<td>2.0 mL/m (0.120 L/h) (0.031 GPH)</td>
</tr>
<tr>
<td>1.OUT.D</td>
<td>(OUT1 delay time)</td>
<td>0 - 999 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>1.FC.AL</td>
<td>(Poor flow alarm)</td>
<td>0.0 - 999.9 mL/m (0.000 - 59.994 L/h) (0.000 - 15.828 GPH)</td>
<td>0.1 (0.001)</td>
</tr>
<tr>
<td>1.AL.TM</td>
<td>(Alarm delay time)</td>
<td>1. - 30. min</td>
<td>5 sec</td>
</tr>
<tr>
<td>1.ON-OF</td>
<td>(Pump on-off selection)</td>
<td>P.ON/P.OFF</td>
<td>P.OFF</td>
</tr>
<tr>
<td>1.OUT.L</td>
<td>(OUT logic selection)</td>
<td>N.O./N.C.</td>
<td>N.O.</td>
</tr>
<tr>
<td>OUT2 (OUT2 selection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.OUT.T</td>
<td>2.SENS/2.SPM/2.ALM/2.FL.ER/2.F.CHK/2.OFF</td>
<td>-</td>
<td>2.OFF</td>
</tr>
<tr>
<td>2.STOP</td>
<td>(STOP alarm)</td>
<td>ON/OFF</td>
<td>ON</td>
</tr>
<tr>
<td>2.P.STP</td>
<td>(Pre-STOP alarm)</td>
<td>ON/OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2.I.LOC</td>
<td>(Interlock alarm)</td>
<td>ON/OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2.COMP</td>
<td>(BATCH/MULT completion)</td>
<td>ON/OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2.FLOW</td>
<td>0.1 - 999.9 mL/m (0.006 - 59.994 L/h) (0.001 - 15.828 GPH)</td>
<td>0.1 (0.001)</td>
<td>2.0 mL/m (0.120 L/h) (0.031 GPH)</td>
</tr>
<tr>
<td>2.OUT.D</td>
<td>(OUT2 delay time)</td>
<td>0 - 999 sec</td>
<td>0 sec</td>
</tr>
</tbody>
</table>
Operation Programming

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Setting ranges</th>
<th>STEP<sup>1</sup></th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.FC.CHK</td>
<td>0.0 - 999.9 mL/m (0.000 - 59.994 L/h) (0.000 - 15.828 GPH)</td>
<td>0.1 (0.001)</td>
<td>3.0 mL/m (0.180 L/h), (0.047 GPH)</td>
</tr>
<tr>
<td>2.FC.CHK</td>
<td>0.0 - 999.9 mL/m (0.000 - 59.994 L/h) (0.000 - 15.828 GPH)</td>
<td>0.1 (0.001)</td>
<td>0.0 % 0.0000 mL/m (L/h) (GPH)</td>
</tr>
<tr>
<td>A.MODE/B.MODE/C.MODE/D.MODE/OFF</td>
<td>-</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>FC.MUM (Number of dry shots)</td>
<td>1 - 60</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FC.MUM (Number of dry shots)</td>
<td>1 - 60</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FC.POF (Dry shots to P-OFF)</td>
<td>1 - 60</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FC.TIM (Detection time)</td>
<td>1. - 60. min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FC.PRM (Priming time)</td>
<td>1. - 60. min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FC.RTN (Return time)</td>
<td>0.01 - 60.00 min. sec</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPT.T (Input1 mode selection)</td>
<td>PULS/I.LOCK/AUX/B-S/S (BATCH)</td>
<td>-</td>
<td>PULS</td>
</tr>
<tr>
<td>INPT.L (Input1 logic selection)</td>
<td>CL-OF/CL-ON</td>
<td>-</td>
<td>CL-ON</td>
</tr>
<tr>
<td>STOP. L (STOP)</td>
<td>CL-OF/CL-ON</td>
<td>-</td>
<td>CL-ON</td>
</tr>
<tr>
<td>P.STP. L (Pre-STOP)</td>
<td>CL-OF/CL-ON</td>
<td>-</td>
<td>CL-ON</td>
</tr>
<tr>
<td>CODE</td>
<td>00000 - 99999</td>
<td>1</td>
<td>00000</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (Total flow volume)</td>
<td>0 - 99999 (mL/L/G)</td>
<td>-</td>
<td>0 (mL/L/G)</td>
</tr>
<tr>
<td>SHOT.C (Total number of strokes)</td>
<td>0 - 99999</td>
<td>-</td>
<td>0 shot (×1k)</td>
</tr>
<tr>
<td>OUT 1.C (Total output)</td>
<td>0 - 99999</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>OUT 2.C (Total output)</td>
<td>0 - 99999</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>PWR.ON (Total power connection time)</td>
<td>0 - 99999 hour</td>
<td>-</td>
<td>0 hour</td>
</tr>
<tr>
<td>OPER.T (Total operating time)</td>
<td>0 - 99999 hour</td>
<td>-</td>
<td>0 hour</td>
</tr>
</tbody>
</table>

¹ The flow rate increases/decreases by 1spm as pushing the UP/DOWN keys. Press and hold either key for quick change.

² The F.CHK parameter is not enabled when the EFS flow sensor is connected to the pump.
Programming flow

Power ON

EXT mode

1 sec.

EXT mode selection

Stroke rate setting

Manual mode

Manual operation

Prime mode

Flow rate display

Calibration mode

3 sec.

Save

Cancel

1 sec.

Calibration mode Save

Calibration mode

ANA.V setting routine

ANA.R setting routine

Operation history

OUTPUT setting

INPUT setting

EXT mode setting

FCP/FCM setting

PIN number setting

See ANA-V setting routine

See ANA.R setting routine

See PLS setting routine

ANAL. V

0.0

ANAL. R

0.0

PLS

0.0

360°/hr

0.0000

1000.0

3 sec.
Manual operation

Run or stop the pump by keypad operation.

1. **Turn on power.**

The LED lights and a display related to the current mode appears on the screen.

 The pump waits in the manual mode when turning on power with a default setting or calls up a previous mode at the last shutoff.

 The pump waits for 20 minutes to start operation when powered on with the EFS flow sensor.

2. **Enter manual mode.**

 Move to the next step when a stroke rate (0.1-100.0%) is shown on the screen.

 When the pump is in the EXT mode:

 Push the start/stop key once to enter the wait state in the manual mode.

 ![ON LED](image)

 When the "STOP" or "-STOP" indication is on the screen:

 See page 92 and 93 to release the condition.

3. **Push the start/stop key.**

 The pump starts to run. The LED blinks green at each shot.

 The flow rate unit changes in between "spm", "%", "GPH", "L/h" and "mL/m".

![EXT](image)
EXT operation

- **Digital control**
The pump operation is controlled by the external (pulse) signal. Set a multiplier or a divisor before operation. Digital control is divided into two mode as below.

DIV mode
Set the number of signals per shot to control the pump.

MULT mode
Set the number of shots per signal to control the pump.

NOTE
When the pump is used with the EFS sensor, the DIV or MULT mode is not enabled.

1 Enter EXT mode.
Push the EXT key to move from manual mode to EXT mode.

2 Press and hold the EXT key for one second and enter the EXT mode selection.

3 Select "DIV" or "MULT".
Scroll through the EXT mode selection by the UP and DOWN keys.
4 Push the EXT key once.

5 Use the UP or DOWN key to set a divisor or a multiplier.
 *Shift to the next digit by pushing the DISP key for divisor setting.

 ![Divisor setting][Divisor]
 ![Multiplier setting][Multiplier]

6 Push the EXT key to return to the EXT mode selection.

7 Push the start/stop key to return to EXT mode.
 The pump starts to run according to the setting.

- **Buffer ON/OFF selection (MULT/DIV)**
 If the buffer is turned ON, excessive external signals that have not been processed in the MULT or DIV operation are temporally stored and processed after the signal entry is stopped.
 - **When "bM-ON" is selected:**
 Excessive external signals are stored.
 - **When "bM-OF" is selected:**
 Excessive external signals are not stored.

 ![EXT mode setting][EXT]
Analogue proportional control
Select the "ANA.V" or "ANA.R" option in the user mode.

When the "ANA.R" mode is selected:

The "4-20", "20-4", "0-20" and "20-0" presets are available.

When the "ANA.V" mode is selected:

A new proportional line can be set with the LINE, BOX or LIMIT patterns.

NOTE
The feedback from the EFS flow sensor supports the ANA.V proportional control only.

ANA.R (Analogue rigid)

1 Enter EXT mode.
Push the EXT key to move from manual mode to EXT mode.

2 Press and hold the EXT key for one second and enter the EXT mode selection.

3 Select "ANA.R".
Scroll through the EXT mode selection by the UP and DOWN keys.

Skip to the item 5 when "ANA.R" is selectable. Otherwise, skip to the item 4 to select "ANA.R" through the EXT mode setting.
4 Return to the MAN mode (pump stops). Press and hold the EXT key for 1 second to call up the user mode menu. Select the "PG.EXT", "ANA" and then "ANA.R" options with the EXT key.

Return to the EXT mode selection after the selection by pushing the start/stop key a few times.

5 Push the EXT key and scroll through the ANA.R preset patterns by the UP and DOWN keys.

6 Push the EXT key to return to the EXT mode selection and then push the start/stop key to enter EXT mode.

The pump starts to run in proportional control according to the ANA.R setting.
Operation programming

1. **Enter EXT mode.**
 Push the EXT key to move from manual mode to EXT mode.

 ![Diagram of EXT mode entry](image)

2. **Press and hold the EXT key for one second and enter the EXT mode selection.**

 ![Diagram of EXT mode selection](image)

3. **Select the "ANA.R" or "ANA.V" option.**
 Scroll through the EXT mode selection by the UP and DOWN keys.

 ![Diagram of EXT mode selection](image)

4. **Push the start/stop key twice to return to the MAN mode.**

5. **Press and hold the EXT key for 1 second to call up the user mode menu.**
6 Select the "PG.EXT" option and push the EXT key.

7 Select the "ANA" option and then the "ANA.R" or "ANA.V" option.

8 Use the UP and DOWN keys to select the "CURVE" option and determine the operation pattern from the "LINE", "BOX" or "LIMIT" options. See below.

Return to the EXT mode selection after the selection.
9 Push the EXT key to move the ANA.V setting routine.

10 Enter a current value and a stroke rate at SP1 and SP2.

11 Push the start/stop key twice to move back to the EXT mode.

The pump starts to run in proportional with the external current signal.
Pulse proportional control

Choose the "PLS" option in the EXT mode selection.

When the "PLS" option is selected:

A proportional control pattern can be newly set according to the LINE, BOX, or LIMIT pattern.

PLS (Pulse variable)

1. Enter EXT mode.
 Push the EXT key to move from manual mode to EXT mode.

2. Press and hold the EXT key for one second and enter the EXT mode selection.

3. Select the "PLS" option.
 Scroll through the EXT mode selection by the UP and DOWN keys.

4. Push the start/stop key twice to return to the MAN mode.

5. Press and hold the EXT key for 1 second to call up the user mode menu.
6 Select the "PG.EXT" option and push the EXT key.

7 Select the "RANGE" option and determine the pulse rate
 Select the "100" or "500" option according to the external pulse rate
 inputted from an external device to the pump.
 *Applicable pulse rate of 0.0-100.0Hz with the "100" option.
 *Applicable pulse rate of 0.0-50.00Hz with the "500" option.

8 Use the UP and DOWN keys to select the "CURVE" option and
 determine the operation pattern from the "LINE", "BOX" or "LIMIT"
 options. See below.
 Return to the EXT mode selection after the selection.

Operational pattern selection with the PLS control mode
9 Push the EXT key to move the the PLS setting routine.

10 Enter a current value and a stroke rate at SP1 and SP2.
The SP1 and 2 pulse rates can be shifted to the next digit every time the DISP key is pushed.

11 Push the start/stop key twice to move back to the EXT mode.
The pump starts to run in proportional with the external pulse.
Priming function

This key operation runs the pump at the maximum stroke rate in operation.

1. Press and hold both the UP and DOWN keys.
 The pump runs at the maximum stroke rate while both keys are pressed.

 ![Diagram](image)
 Press & hold both keys.

Keypad lock

Keypad lock can be active for the prevention of erroneous key operation.

NOTE

Any key operation is not acceptable when the keypad lock is active. In an emergency, pressing the start/stop key for three seconds, the pump enters a wait state and stops running. Pressing the same key once again will resume operation.

- **Keypad lock activation**

1. Press and hold the start/stop key for more than three seconds.
 "LOCK" indication appears on the screen.

 ![Diagram](image)
Keypad lock release

1. **Push any key other than the start/stop.**

 ![Keypad lock release](image)

2. **Enter pin number.**
 Shift to the next digit by pushing the DISP key.
 *A default PIN number is "00000".

3. **Push the EXT key**
 The keypad lock state then will be released.
 *If the pin number is not correct, "FAIL" will be shown and the lock state will continue.

Emergency stop with a keypad lock state

1. **Press and hold the start/stop key for three seconds.**
 The pump enters a wait state and stops running with keypad locked.
 Pressing the same key once again will resume operation with keypad locked.
 *Keypad lock can not be released during emergency stop. Always restart the pump and then enter the deactivation pin number.
Unit change

%, spm, GPH, L/h and mL/m cycle through every time the DISP key is pushed. To ensure the correct flow reading, flow calibration must be performed in advance. See page 67 for detail. A stroke rate is shown in % with default setting.

■ Stroke rate unit

% indication

A flow rate is shown in between 0 and 100%. 100% means 360spm.

spm indication

Shows a stroke rate per minute.

■ Flow rate unit

The following flow units are available.

GPH indication

A flow rate is shown in gallon per hour.

L/h indication

A flow rate is shown in litter per hour.

mL/m indication

A flow rate is shown in millilitre per minute.

* A target flow is shown with the "Disp" icon when the EFS flow sensor is installed.
* An actual flow rate is shown with the "Disp" icon during feedback control with the EFS flow sensor.
User mode

The following features can be set. Move to the user mode with the EXT key in the wait state (MAN mode).

OUTPUT setting (page 89)
Parameter setting of the OUT1, OUT2 and analogue output.

INPUT setting (page 92)
Parameter setting of the INPUT.

EXT mode setting (page 94)
Selection of buffer on/off (MULT/DIV) and ANA.R/ANA.V/PLS for the EXT mode.

FCP/FCM setting (page 94)
Selection of the operational behaviour with the FCP or FCM.

PIN number entry (page 97)
A PIN is required to release a keypad lock state.

Operation history (page 98)
Information such as total flow volume and total power connection time is shown.
Output setting

Parameter setting for the OUT1 (mechanical relay), OUT2 (PhotoMOS relay) and analogue output.

- **OUT1**
 - Selection menus appear when "1.ALM" is selected. See the 1.ALM selection menus.
 - Enabled
 - Disabled
 - Synchronous output (sensor)
 - Synchronous output (pump)

- **OUT2**
 - Selection menus appear when "2.ALM" is selected. See the 2.ALM selection menus.
 - Enabled
 - Disabled

- **ANALOGUE**
 - Enter a flow/stroke rate at 4mA.
 - Enter a flow/stroke rate at 20mA.
1. ALM selection menus (OUT1 mechanical relay)

- **1.OUT.T**
 - Set
 - Enable/disable STOP alarm output.

- **1.STOP**
 - Set
 - Enable/disable Pre-STOP alarm output.

- **1.P.STOP**
 - Set
 - Enable/disable Interlock alarm output.

- **1.I.COM**
 - Set
 - Enable/disable completion alarm of the digital control (MULT) or batch control.

- **1.OUT.L**
 - Set
 - Change the output logic between N.O. and N.C.

△ ▲ keys to scroll
2. ALM selection menus (OUT2 photoMOS relay)

- Enable/disable STOP alarm output.
- Enable/disable Pre-STOP alarm output.
- Enable/disable Interlock alarm output.
- Enable/disable completion alarm of the digital control (MULT).
- Change the output logic between N.O. and N.C.

△ ▼ keys to scroll
Analogue out
The pump outputs a current value of 4-20mA according to a flow/stroke rate.
*The default setting is 0spm at 4mA and 360spm at 20mA.
*One of the flow rate units of mL/m, L/h or GPH is available when the EFS flow sensor is mounted.

■ INPUT setting
Parameter setting for the INPUT.

Select and enable an input type.

Interlock

AUX

Batch Start/Stop

Pulse

Select an option to recognize pulse signal input.

CL-ON : Signal input at closed circuit.
CL-OFF: Signal input at open circuit.

<To next page>

△ ▽ keys to scroll.
Select an option to determine pump behaviour with STOP signal.

CL-ON: Pump stops at signal input.
CL-OFF: Pump runs at signal input.

Select an option to determine STOP LED behaviour with Pre-STOP signal.

CL-ON: LED lights orange at signal input.
CL-OFF: LED stops lighten-ing at signal input.

△ ▽ keys to scroll.
EXT mode setting

Selection of buffer on/off and ANA.R/ANA.V for the EXT mode.

Buffer ON/OFF selection (MULT/DIV)

See page 76 for detail.

Analogue proportional control

See page 77 for detail.

FCP/FCM setting

Selection of the operational behaviour with the FCP or FCM.

This parameter is not enabled when the EFS flow sensor is connected to the pump.
Set the FC.MUM (number of dry shots) to determine upset conditions.

Set the FC.POF (dry shots to pump off) in between 1 and 60 to count down the pump shots to stop. "FLOW" flashes after the pump has stopped. FC.POF is settable only when "B.MODE" or "C.MODE" is selected.

When A, B or C.MODE is selected.
Set the FC.TIM (detection time) by minutes to determine upset conditions.

Set the FC.PRM (priming time) by minutes.

Set the FC.RTN (return time) by minutes to recover operation. The time must be shorter than the priming time.

△▽ keys to increase/decrease. ▲▼ keys to increase/decrease. "SET" keys to change min/sec.

When D.MODE is selected.
■ PIN number entry
A PIN is required to release a keypad lock state.
*The default setting is 00000.

![PIN entry process]

Enter PIN number.

▲ ▼ keys to increase/decrease.
♦ keys to change min/sec.
Operation history

Information such as total flow volume and total power connection time is shown. Pushing both the EXT and DISP key defaults these information except total power connection time and total operating time.

<table>
<thead>
<tr>
<th>DATA</th>
<th>150 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>SHOT.C</td>
<td>2573</td>
</tr>
<tr>
<td>OUT 1C</td>
<td>6</td>
</tr>
<tr>
<td>OUT 2C</td>
<td>8</td>
</tr>
<tr>
<td>PWPRON</td>
<td>27 h</td>
</tr>
<tr>
<td>OPER.T</td>
<td>3 h</td>
</tr>
</tbody>
</table>

- Indicates total flow volume.
- Indicates total number of strokes. *1000 shots=1 (1K)*
- Indicates total number of output activation.
- Indicates total number of output activation.
- Indicates total power connection time.
- Indicates total operating time.
Combination with the EFS flow sensor

- Feedback control
 The pump automatically controls a stroke rate to meet the target flow rate, measuring an actual flow with the EFS sensor.

1. Push the DISP key when the pump is waiting in MAN mode.
 Select the "GPH", "L/h" or "mL/m" flow unit

 ![Dispensation](image)

 When the pump is in the EXT mode:
 Push the start/stop key once to enter the wait state in the manual mode.

 When the "STOP" or "-STOP" indication is on the screen:
 See page 92 and 93 to release the condition.

2. Push the start/stop key.
 The pump starts to run under feedback control. ON LED flashes in green at each shot.

 ![Dispensation](image)

 *▲▼ keys to determine a target flow rate. Set the liquid volume per shot by the stroke length knob in advance. See page 66.

 *Push of the DISP key scroll through the stroke rate units of ",%, "spm", and the flow rate units of "GPH", "L/h" and "mL/m". See page 87.

 *The flow rate unit selected here remains and reappears when the pump stops even if it is changed to the stroke rate unit of "spm" or "%" during operation.
■ Batch control

The pump runs until meeting the set volume per pulse and stops afterwards.

1. **Enter EXT mode.**
 Push the EXT key to move from manual mode to EXT mode.
 ![Diagram showing EXT key press](image)

2. **Press and hold the EXT key for one second and enter the EXT mode selection.**
 ![Diagram showing EXT key press](image)

3. **Select "BATCH".**
 Scroll through the EXT mode selection by the UP and DOWN keys.
 ![Diagram showing EXT key press](image)

4. **Set the volume of discharge and push the EXT key.**
 Use the keys to increase/decrease and the key to shift to the next digit.
 ![Diagram showing EXT key press](image)

5. **Push the start/stop key to enter EXT mode.**
 The pump starts the batch control.
■ Buffer ON/OFF selection (Batch)

If the buffer is enabled in the batch control, the external pulse signal must be entered via the analogue/pulse input terminal or the INPUT terminal (see page 50 for their wiring diagrams). Either terminal can be used, however, when using the INPUT terminal, choose the "INPUT", "INP.T" and then "PULS" options in the user mode.

*If the buffer is disabled, the external signal via the INPUT terminal with the "INPUT", "INP.T" and then "B-S/S" options work as the start/stop signal of the batch control. See the diagram on page 31 for the behaviour. The current dosing is cancelled and the next dosing starts when another signal is inputted.

EXT mode setting

A buffer does not work and the pump continues to run until meeting the set volume.

A buffer works and doubles the set volume when the pump receives another signal during operation.

-keys to scroll.
■ Default setting
The default flow rate at the SP2 (ANA.V/PLS mode) and 20mA (analogue output) can be changed.

1. Press and hold the DISP key for 3 seconds in the wait state (MAN mode) to enter the TEST mode.

 ![Screen display]
 - 1000% disp
 - TEST ml

 3 sec

2. Push the start/stop key to start the pump and countdown. The pump runs at the maximum speed.

 ![Screen display]
 - TEST ml
 - 10 ml

3. A default flow rate has been changed.
 The pump automatically returns to the wait state (MAN mode).

 ![Screen display]
 - CALOK ml
 - 1000%
Out of measurement and Poor flow alarms (OUT1 & 2)
Available only with the combination of the pump and the EFS flow sensor. Allocate the out of measurement alarm (1.FL.ER or 2.FL.ER) or the poor flow alarm (1.F.CHK or 2.F.CHK) to the OUT1 and 2.

Out of measurement alarm setting (analog/pulse proportional control)
Available after the "1.FL.ER (or 2.FL.ER)" option is selected in the user mode. Set the allowable deviation (1.FLOW) and the delay time (1.OUT.D).
Poor flow alarm setting
Available after the "1.F.CHK (or 2.F.CHK)" option is selected. Set the alarm time (1.AL.TM) and select the pump on or off (1.ON-OF).

1. **IFCAL**
 - Set the allowable minimum flow rate.
 -
 -

2. **IAL.TM**
 - Set the time to alarm a poor flow.
 -
 -

3. **IONOF**
 - Select the pump behaviour (run/stop) while alarm is on.
 -
 -

4. **IOUTL**
 - Change the output logic between N.O. and N.C.
 -
 -

 \[\text{△ ▼ keys to change} \]

 \[\text{△ ▼ keys to select.} \]

 \[\text{△ ▼ keys to increase/decrease.} \]

 \[\text{Disp key to shift to the next digit.} \]
Maintenance

This section describes troubleshooting, inspection, wear part replacement, exploded views and specifications.

Important
- Follow instructions in this manual for replacement of wear parts. Do not disassemble the pump beyond the extent of the instructions.
- Always wear protective clothing such as an eye protection, chemical resistant gloves, a mask and a face shield during disassembly, assembly or maintenance work. The specific solution will dictate the degree of protection. Refer to MSDS precautions from the solution supplier.
- Risk of electrical shock. Be sure to turn off power to stop the pump and related devices before service is performed.

Before unplugging the pump
Always stop the pump by key operation. And wait for three seconds before unplugging the pump. Otherwise, the last key operation to stop the pump may not be put in memory. In this case the pump unintentionally starts to run as powered on, discharging liquid.

NOTE
- It is not manufacturer’s responsibility for material suitability for the liquid used in the field or any failure due to corrosion or erosion.
- Contact us or your nearest distributor for repair or contact a manufacturer of the host machine which our product is built in.
- Be sure to drain chemicals and clean the inside of the pump before return so that a harmful chemical does not spill out in transit.
Troubleshooting

First check the following points. If the following measures do not help remove problems, contact us or your nearest distributor.

<table>
<thead>
<tr>
<th>States</th>
<th>Possible causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pump does not run. (LED does not light. Blank screen.)</td>
<td>Power voltage is too low.</td>
<td>• Observe the allowable voltage range of 90-264VAC.</td>
</tr>
<tr>
<td></td>
<td>The pump is not powered.</td>
<td>• Check the switch if it is installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace a breaking wire to new one.</td>
</tr>
<tr>
<td>Liquid can not be pumped up.</td>
<td>Air lock in the pump</td>
<td>• Expel air. See page 60.</td>
</tr>
<tr>
<td></td>
<td>Air ingress through a suction line.</td>
<td>• Correct tubing.</td>
</tr>
<tr>
<td></td>
<td>A valve set is installed upside down.</td>
<td>• Reinstall the valve set.</td>
</tr>
<tr>
<td></td>
<td>Valve gaskets are not installed.</td>
<td>• Install valve gaskets.</td>
</tr>
<tr>
<td></td>
<td>Foreign matters are stuck in the pump head valves.</td>
<td>• Dismantle, inspect and clean the valves. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>A ball valve is stuck on a valve seat.</td>
<td>• Dismantle, inspect and clean the valve. Replace as necessary.</td>
</tr>
<tr>
<td>The flow rate fluctuates.</td>
<td>Air stays in the pump head.</td>
<td>• Expel air. See page 60.</td>
</tr>
<tr>
<td></td>
<td>Overfeeding occurs.</td>
<td>• Mount a check valve. See page 45.</td>
</tr>
<tr>
<td></td>
<td>Foreign matters are stuck in the pump head valves.</td>
<td>• Dismantle, inspect and clean the valves. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Diaphragm is broken.</td>
<td>• Replace diaphragm. See page 114.</td>
</tr>
<tr>
<td></td>
<td>Pressure fluctuates at an injection point.</td>
<td>• Maintain a pressure constant at an injection point by optimizing piping or by relocating the point.</td>
</tr>
<tr>
<td>Liquid leaks.</td>
<td>Loose fit of the fitting or the air vent body</td>
<td>• Retighten them.</td>
</tr>
<tr>
<td></td>
<td>Loose fit of the pump head</td>
<td>• Retighten the pump head. See page 58.</td>
</tr>
<tr>
<td></td>
<td>O rings or valve gaskets are not installed.</td>
<td>• Install O rings and valve gaskets.</td>
</tr>
<tr>
<td></td>
<td>Diaphragm is broken.</td>
<td>• Replace diaphragm. See page 114.</td>
</tr>
<tr>
<td></td>
<td>Excessive discharge pressure</td>
<td>• Check that a discharge line is not closed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check if tubing is not clogged.</td>
</tr>
</tbody>
</table>
Error codes

Error codes will be shown when this product is in a faulty condition. See below for the meanings of error codes and countermeasures.

■ Error code information

<table>
<thead>
<tr>
<th>Error codes</th>
<th>Possible causes</th>
<th>Descriptions</th>
<th>Error message is shown in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err1</td>
<td>Erroneous setting</td>
<td>The same current value/pulse rate or spm is set to both the set point 1 and 2 when setting analogue/pulse proportional control (ANA.V/PLS) or analogue output.</td>
<td>Err</td>
</tr>
</tbody>
</table>

■ Countermeasures

<table>
<thead>
<tr>
<th>Error codes</th>
<th>Possible causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err1</td>
<td>Erroneous setting</td>
<td>The error condition has been met. Reset a current value or spm to the set point 1 or 2, so that the both points do not have the same value or spm.</td>
</tr>
</tbody>
</table>

■ Error display

The pump shows the "Err" display on its screen. The output activated for the occurrence of the error condition is identified as well.

![Error display](image)

Stands for the out 1 is active. If the icon is 2, it stands for the out 2 is activated.
Perform daily and periodic inspection to keep pump performance and safety.

Daily inspection

Check the following points. If you notice any abnormal or dangerous conditions, suspend operation immediately and inspect/solve problems.

When wear parts come to the life limit, replace them with new ones. Contact us or your nearest distributor for detail.

<table>
<thead>
<tr>
<th>No.</th>
<th>States</th>
<th>Points to be checked</th>
<th>How to check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pumping</td>
<td>• If liquid is pumped.</td>
<td>Flow meter or visual inspection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the suction and discharge pressure are normal.</td>
<td>Check specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If liquid has deteriorated, crystallized or precipitated.</td>
<td>Visual or audio inspection</td>
</tr>
<tr>
<td>2</td>
<td>Noise and vibration</td>
<td>• If abnormal noise or vibration occurs. They are signs of</td>
<td>Visual or audio inspection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>abnormal operation.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Air ingress from</td>
<td>• If leakage occurs.</td>
<td>Visual or audio inspection</td>
</tr>
<tr>
<td></td>
<td>pump head joints and a suction</td>
<td>• If pumped liquid includes air bubbles, check lines for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>line</td>
<td>leakage and retighten as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

Periodic inspection

Retighten the pump head mounting bolts every three months evenly to the following torque in diagonal order.

Mounting bolts may loosen in operation. How fast the bolts start to loosen is depending on operating conditions.

Tightening torque

<table>
<thead>
<tr>
<th>Model code</th>
<th>Torque</th>
<th>Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B09/-B11/-B16/-B21</td>
<td>19 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-B31</td>
<td>22.6 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C16/-C21</td>
<td>19 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C31</td>
<td>22.6 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C36</td>
<td>22.6 lb-in</td>
<td>M5 Hex. socket head bolt</td>
</tr>
</tbody>
</table>

A hexagon wrench can be used for a torque wrench. See page 59.
To run the pump for a long period, wear parts need to be replaced periodically. It is recommended that the following parts are always stocked for immediate replacement. Contact us or your nearest distributor for detail.

Precautions

- Solution in the discharge line may be under pressure. Release the pressure from the discharge line before disconnecting plumbing or disassembly of the pump to avoid solution spray.
- Rinse wet ends thoroughly with tap water.
- Each time the pump head is dismantled, replace the diaphragm, O rings, valve gaskets and valve sets with new ones.

Wear part list

<table>
<thead>
<tr>
<th>Parts</th>
<th># of parts</th>
<th>Estimated life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve set</td>
<td>2 sets</td>
<td>8000 hours</td>
</tr>
<tr>
<td>Pump VC/VH/PC/PH/TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Diaphragm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Automatic air vent valve set</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

*The high pressure types have a rear diaphragm sheet on the back side of the diaphragm.

*Wear part duration varies with the pressure, temperature and characteristics of liquid.

*The estimated life is calculated based on the continuous operation with clean water at ambient temperature.
Before replacement

First release pressure from the pump head.

1 Stop the pump operation.

2 Rotate the adjusting screw two revolutions anticlockwise to open the air vent port.

NOTE
Do not rotate it three revolutions or more. Otherwise, the adjusting screw may come off with solution spray.

3 Check that liquid comes out from the air vent port and gas/liquid pressure has been released.

NOTE
The pressure may not be expelled completely as long as liquid does not come out. In this case run the pump until the pressure is released.

Valve set replacement

Discharge valve set disassembly/assembly

Necessary tools
- Adjustable wrench or spanner
- 0.9inch (21mm) box wrench
- A pair of tweezers

*Unfix the pump base before disassembly.
1. Loosen the fitting nut to remove a discharge tube and an air bleed tube. *Wash out residual liquid or substances.

2. Turn the lock nut anticlockwise by an adjustable wrench and remove the air vent body A.

3. Remove the air vent body B by the 0.9inch (21mm) box wrench.

4. Pull out the valve set by a pair of tweezers.
5 Place a new valve set into the pump head and screw the air vent body B through the lock nut.

*Be careful not to misarrange the valve set or place it upside down. Otherwise, leakage or flow rate reduction may result.
*Do not forget to fit O rings and gaskets.
*Keep the valve set clean.

6 Remount the air vent body A and connect tubes.

■ Suction valve set disassembly/assembly

NOTE
Be careful not to drop the valve set.

1 Remove the fitting nut and the suction tube.

*Wash out residual liquid or substances.

2 Remove the fitting by an adjustable wrench or a spanner.
3 Pull out the valve set by a pair of tweezers.

4 Hand-tighten the fitting with the valve set in it into the pump head as far as it will go. Retighten it by a further 1/4 turn with an adjustable wrench or a spanner.
 * Be careful not to misarrange the valve set or place it upside down. Otherwise, leakage or flow rate reduction may result.
 * Do not forget to fit O rings and gaskets.
 * Keep the valve set clean.

5 Reconnect the suction tube.

Spacer set replacement (auto degassing type)

1 Loosen the lock nut and remove the fitting adapter.

2 Loosen the air vent body B and take it out of the pump head. Then pull out the spacer set.

3 Place a new spacer set into the pump head. Screw the air vent body B into the pump head through the lock nut.
 * Do not forget to fit O rings and gaskets.
 * Keep the spacer set clean.
Air vent valve set replacement (auto degassing type)

1. **Loosen the fitting nut and remove an air bleed tube.**
 Be careful not to get wet with a residual chemical.

2. **Loosen and remove the fitting.**

3. **Take the air vent valve set out of the fitting adapter.**

4. **Place a new air vent valve set into the fitting and then hand-tighten it into the fitting adapter as far as it will go. Retighten the fitting by a further 1/4 turn with a spanner.**
 Note the air vent valve set has a mounting direction. Always mount the depressed end first.

Diaphragm replacement

Necessary tools
- Adjustable wrench or spanner
- Hexagon wrench
- Torque wrench

NOTE
Pay attention not to loose diaphragm spacers. Always apply a proper number of diaphragm spacers. 0 or a few diaphragm spacers are inserted between the retainer and plunger for the adjustment of diaphragm location. Note that the number of diaphragm spacers varies with pump model.
1. Run the pump and set the stroke length to 0%. Then stop the pump.

2. Loosen the fitting nuts and remove a suction tube, a discharge tube and an air bleed tube.

3. Remove the pump head with a hexagon wrench.

4. Rotate and remove the diaphragm from the plunger (pump shaft).

5. Slide a retainer and diaphragm spacer(s) onto the screw of a new diaphragm.
NOTE

- Fit the retainer to the diaphragm with its round edge to the diaphragm.
- Check that the bracket spacer is in place. Refit the bracket spacer into the bracket, combining mating parts as necessary.

6 Screw the new diaphragm into the plunger as far as it will go.
 *Be careful not to lose the retainer and diaphragm spacer.

7 Run the pump and set the stroke length to 100%. Then stop the pump.

8 Mount the pump head.
 Tighten the pump head fixing bolts evenly to the following torque in diagonal order.

<table>
<thead>
<tr>
<th>Model code</th>
<th>Torque</th>
<th>Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B09/-B11/-B16/-B21</td>
<td>19 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-B31</td>
<td>22.6 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C16/-C21</td>
<td>19 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C31</td>
<td>22.6 lb-in</td>
<td>M4 Hex. socket head bolt</td>
</tr>
<tr>
<td>EWN-C36</td>
<td>22.6 lb-in</td>
<td>M5 Hex. socket head bolt</td>
</tr>
</tbody>
</table>

*A hexagon wrench can be used for a torque wrench. See page 59.
Exploded view

Pump head, Drive unit & Control unit

The pump in the diagram below is completely dismantled. Do not dismantle the pump beyond the extent shown in this instruction manual.

Wet end materials and their sizes differ with models.
Pump head

EWN VC/VH/VE/PC/PH/PE/TC

<table>
<thead>
<tr>
<th>No.</th>
<th>Part names</th>
<th># of parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump head</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fitting</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fitting nut</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Air vent body B</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Lock nut</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Diaphragm</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Retainer</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Air vent body A</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Valve guide</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Valve</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Valve gasket</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>O ring</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Diaphragm spacer</td>
<td>*¹</td>
</tr>
<tr>
<td>19</td>
<td>Hex. socket head bolt [PW•SW]</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>Adjusting screw</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Hose stopper</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Hose adaptor</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>O ring</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>Rear diaphragm seat*²</td>
<td>1</td>
</tr>
</tbody>
</table>

*¹The number of diaphragm spacers varies with pump model.

*²For the PC-H/PH-H types, a rear diaphragm sheet is placed between the parts 7 and 9.
<table>
<thead>
<tr>
<th>No.</th>
<th>Part names</th>
<th># of parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump head</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fitting</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Diaphragm</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Retainer</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Valve guide</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Valve</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Valve gasket</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>O ring</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Diaphragm spacer</td>
<td>*</td>
</tr>
<tr>
<td>19</td>
<td>Hex. socket head bolt [PW•SW]</td>
<td>4</td>
</tr>
</tbody>
</table>

*The number of diaphragm spacers varies with pump model.
<table>
<thead>
<tr>
<th>No.</th>
<th>Part names</th>
<th># of parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump head</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fitting</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Diaphragm</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Retainer</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Valve guide</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Valve</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Valve gasket B</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Diaphragm spacer</td>
<td>*</td>
</tr>
<tr>
<td>19</td>
<td>Hex. socket head bolt [PW•SW]</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Valve gasket A</td>
<td>8</td>
</tr>
<tr>
<td>37</td>
<td>Adjusting screw</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Seal nut</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Seal ring</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Seat</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Seat ring</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Air vent body A</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Gasket</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>Air vent body B</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Nut</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>Male connector</td>
<td>1</td>
</tr>
</tbody>
</table>

*The number of diaphragm spacers varies with pump model.
The number of diaphragm spacers varies with pump model.

<table>
<thead>
<tr>
<th>No.</th>
<th>Part names</th>
<th># of parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump head</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fitting</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fitting nut</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Diaphragm</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Retainer</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Valve guide</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Valve</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Valve gasket</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>O ring</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Diaphragm spacer</td>
<td>*</td>
</tr>
<tr>
<td>19</td>
<td>Hex. socket head bolt [PW•SW]</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Hose stopper</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Hose adapter</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Inlet</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Valve spring</td>
<td>2</td>
</tr>
</tbody>
</table>

The number of diaphragm spacers varies with pump model.
EWN-B11/-B16/-C16/-C21 VC-A/VH-A

<table>
<thead>
<tr>
<th>No.</th>
<th>Part names</th>
<th># of parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump head</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fitting</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fitting nut</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Air vent body B</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Lock nut</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Diaphragm</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Retainer</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Air vent body A</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Valve guide</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Valve seat</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Valve</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Valve gasket</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>O ring</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Diaphragm spacer</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Hex. sock. cap bolt [PW•SW]</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>Diaphragm seal</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Adjusting screw</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Name plate</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Hose stopper</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>Hose adapter</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>O ring</td>
<td>4</td>
</tr>
<tr>
<td>56</td>
<td>Fitting adapter</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Air vent valve guide A</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Air vent valve guide B</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>Spacer</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>Separate pin</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Valve</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>Valve seat</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>Air vent body B</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>Lock nut</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>O ring</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>Air vent fitting</td>
<td>1</td>
</tr>
</tbody>
</table>
Specifications

Information in this section is subject to change without notice.

■ Pump unit

VC/VH/VE/PC/PH/PE

<table>
<thead>
<tr>
<th>Model code</th>
<th>Flow rate GPH (mℓ/min)</th>
<th>Discharge pressure PSI (MPa)</th>
<th>Stroke length % (mm)</th>
<th>Stroke rate % (spm)</th>
<th>Current value A</th>
<th>Power consumption W</th>
<th>Weight lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B11</td>
<td>0.6 (38)</td>
<td>145.0 (1.0)</td>
<td>50-100 (0.5-1.0)</td>
<td></td>
<td>0.8</td>
<td>20</td>
<td>6.2</td>
</tr>
<tr>
<td>EWN-B16</td>
<td>1.0 (65)</td>
<td>101.5 (0.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-B21</td>
<td>1.6 (100)</td>
<td>58.0 (0.4)</td>
<td></td>
<td>0.1-100 (1-360)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-B31</td>
<td>3.2 (200)</td>
<td>29.0 (0.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-C16</td>
<td>1.3 (80)</td>
<td>145.0 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-C21</td>
<td>2.1 (130)</td>
<td>101.5 (0.7)</td>
<td>40-100 (0.5-1.25)</td>
<td></td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
</tr>
<tr>
<td>EWN-C31</td>
<td>4.3 (270)</td>
<td>50.8 (0.35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-C36</td>
<td>6.7 (420)</td>
<td>29.0 (0.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FC/SH/TC

<table>
<thead>
<tr>
<th>Model code</th>
<th>Flow rate GPH (mℓ/min)</th>
<th>Discharge pressure PSI (MPa)</th>
<th>Stroke length % (mm)</th>
<th>Stroke rate % (spm)</th>
<th>Current value A</th>
<th>Power consumption W</th>
<th>Weight lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B11</td>
<td>0.6 (38)</td>
<td>145.0 (1.0)</td>
<td>50-100 (0.5-1.0)</td>
<td></td>
<td>0.8</td>
<td>20</td>
<td>6.2</td>
</tr>
<tr>
<td>EWN-B16</td>
<td>1.0 (65)</td>
<td>101.5 (0.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-B21</td>
<td>1.6 (100)</td>
<td>58.0 (0.4)</td>
<td></td>
<td>0.1-100 (1-360)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-B31</td>
<td>3.2 (200)</td>
<td>29.0 (0.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-C16</td>
<td>1.3 (80)</td>
<td>145.0 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-C21</td>
<td>2.1 (130)</td>
<td>101.5 (0.7)</td>
<td>40-100 (0.5-1.25)</td>
<td></td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
</tr>
<tr>
<td>EWN-C31</td>
<td>4.3 (270)</td>
<td>50.8 (0.35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWN-C36</td>
<td>6.5 (410)</td>
<td>29.0 (0.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VC-C/VH-C/VE-C (high compression type)

<table>
<thead>
<tr>
<th>Model code</th>
<th>Flow rate GPH (ml/min)</th>
<th>Discharge pressure PSI (MPa)</th>
<th>Stroke length % (mm)</th>
<th>Stroke rate % (spm)</th>
<th>Current value A</th>
<th>Power consumption W</th>
<th>Weight lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B09</td>
<td>0.2 (12)</td>
<td>145.0 (1.0)</td>
<td></td>
<td></td>
<td>50-100 (0.625-1.25)</td>
<td>0.1-100 (1-180)</td>
<td>0.8</td>
</tr>
<tr>
<td>EWN-B11</td>
<td>0.4 (23)</td>
<td>145.0 (1.0)</td>
<td>50-100 (0.6-1.25)</td>
<td>0.1-100 (1-180)</td>
<td>0.8</td>
<td>20</td>
<td>6.2</td>
</tr>
<tr>
<td>EWN-B16</td>
<td>0.6 (40)</td>
<td>101.5 (0.7)</td>
<td>0.8</td>
<td>20</td>
<td>6.2</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>EWN-B21</td>
<td>1.0 (63)</td>
<td>58.0 (0.4)</td>
<td></td>
<td></td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
</tr>
<tr>
<td>EWN-C16</td>
<td>0.9 (54)</td>
<td>145.0 (1.0)</td>
<td>40-100 (0.6-1.50)</td>
<td>0.1-100 (1-180)</td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
</tr>
<tr>
<td>EWN-C21</td>
<td>1.2 (130)</td>
<td>101.5 (0.7)</td>
<td></td>
<td></td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
</tr>
</tbody>
</table>

PC-H/PH-H/PE-H/SH-H (high pressure type)

<table>
<thead>
<tr>
<th>Model code</th>
<th>Flow rate GPH (ml/min)</th>
<th>Discharge pressure PSI (MPa)</th>
<th>Stroke length % (mm)</th>
<th>Stroke rate % (spm)</th>
<th>Current value A</th>
<th>Power consumption W</th>
<th>Weight lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B11</td>
<td>0.4 (25)</td>
<td>246.6 (1.7)</td>
<td>50-100 (0.5-1.0)</td>
<td>0.1-100 (1-240)</td>
<td>0.8</td>
<td>20</td>
<td>6.2</td>
</tr>
<tr>
<td>EWN-C16</td>
<td>0.6 (40)</td>
<td>246.6 (1.7)</td>
<td>40-100 (0.5-1.25)</td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

P6-V (high viscosity type)

<table>
<thead>
<tr>
<th>Model code</th>
<th>Flow rate GPH (ml/min)</th>
<th>Discharge pressure PSI (MPa)</th>
<th>Stroke length % (mm)</th>
<th>Stroke rate % (spm)</th>
<th>Current value A</th>
<th>Power consumption W</th>
<th>Weight lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-C31</td>
<td>2.4 (150)</td>
<td>72.5 (0.5)</td>
<td>40-100 (0.5-1.25)</td>
<td>0.1-100 (1-240)</td>
<td>1.2</td>
<td>24</td>
<td>8.2</td>
</tr>
</tbody>
</table>

VC-A/VH-A (auto degassing type)

<table>
<thead>
<tr>
<th>Model code</th>
<th>Flow rate GPH (ml/min)</th>
<th>Discharge pressure PSI (MPa)</th>
<th>Stroke length % (mm)</th>
<th>Stroke rate % (spm)</th>
<th>Current value A</th>
<th>Power consumption W</th>
<th>Weight lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWN-B11</td>
<td>0.5 (30)</td>
<td>145.0 (1.0)</td>
<td>50-100 (0.5-1.0)</td>
<td>0.1-100 (1-360)</td>
<td>0.8</td>
<td>20</td>
<td>6.4</td>
</tr>
<tr>
<td>EWN-B16</td>
<td>0.9 (55)</td>
<td>101.5 (0.7)</td>
<td></td>
<td></td>
<td>1.2</td>
<td>24</td>
<td>8.4</td>
</tr>
<tr>
<td>EWN-C16</td>
<td>1.0 (65)</td>
<td>145.0 (1.0)</td>
<td>40-100 (0.5-1.25)</td>
<td>1.2</td>
<td>24</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>EWN-C21</td>
<td>1.7 (110)</td>
<td>101.5 (0.7)</td>
<td></td>
<td></td>
<td>1.2</td>
<td>24</td>
<td>8.4</td>
</tr>
</tbody>
</table>
*The above information is based on pumping clean water at rated voltage and ambient temperature.
*Flow rates were collected at the maximum discharge pressure, 100% stroke length and 360spm (180spm for the VC-C/VH-C/VE-C, 240spm for the PC-H/PH-H/PE-H/SH-H/P6-V). A flow rate increases as a discharge pressure decreases.
*Allowable room temperature: 0-40°C
*Allowable liquid temperature: -10 - 40°C (-10 - 60°C for the PC/PH/TC/FC/SH)
*Allowable power voltage deviation: ±10% of the rated range
*Weight of the EWN-B SH type is 3.6kg and EWN-C SH is 4.5kg.
*For the P6-V type, its flow rate was collected with clean water. The rate may change depending on liquid viscosity, and therefore are not guaranteed.
Control unit

<table>
<thead>
<tr>
<th>Functions</th>
<th>Operation mode</th>
<th>EXT (operation with EXT setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAN (operation at manual speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback control (operation with the EFS)</td>
<td></td>
</tr>
<tr>
<td>Mode selection</td>
<td>EXT key, START/STOP key</td>
<td></td>
</tr>
</tbody>
</table>

Keypad

<table>
<thead>
<tr>
<th>Batch control</th>
<th>Operation with the EFS and set volume per pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital control</td>
<td>n (1-9999) shots per signal (n = multiplier) n (1-9999) signals per shot (n = divisor)</td>
</tr>
<tr>
<td>Analogue control</td>
<td>ANA.R (analogue rigid): 4-20/20-4/0-20/20-0mA ANA.V (analogue variable): Set point 1 and 2</td>
</tr>
<tr>
<td>Pulse control</td>
<td>PLS: Set point 1 and 2</td>
</tr>
<tr>
<td>MAN operation</td>
<td>Operation at a MAN speed from 0.1%(/1spm) to 100.0%/360spm. A push of the start/stop key or the STOP signal input runs/stops the pump.</td>
</tr>
<tr>
<td>Feedback control</td>
<td>Operation with the EFS and a target flow rate.</td>
</tr>
<tr>
<td>STOP</td>
<td>Operation stop at contact input</td>
</tr>
<tr>
<td>Interlock</td>
<td>Operation stop at contact input</td>
</tr>
<tr>
<td>Degassing</td>
<td>Max spm operation by pressing the UP and DOWN keys</td>
</tr>
<tr>
<td>Keypad lock</td>
<td>Keypad lock and release</td>
</tr>
</tbody>
</table>

Monitors

LCD	14×5 backlit LCD indicates information such as operating conditions and units.
LED	ON Green/Orange ×1 Lights orange as powered on. Lights green while ready for operation Flashes green during operation
STOP	Red/Orange ×1 Lights red at STOP signal input Lights orange at Pre-STOP signal input
OUT	Red ×1 Flashes at each output

Input

Pulse	No voltage contact or Open collector
Analogue	0-20mA
STOP/Pre-STOP	No voltage contact or Open collector
AUX	No voltage contact or Open collector
Interlock	No voltage contact or Open collector
Batch Start/Stop	No voltage contact or Open collector
Output

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>No voltage contact (mechanical relay) 250VAC, 3A (resistance load)
Enable or disable the alarms of the STOP, Pre-STOP, Interlock, Batch/MULT operation completion, Out of measurement and Poor flow
Factory default (STOP)</td>
</tr>
<tr>
<td>OUT2</td>
<td>No voltage contact (photoMOS) 24VAC/DC 0.1A
Enable or disable the alarms of the STOP, Pre-STOP, Interlock, Batch/MULT operation completion, Out of measurement and Poor flow or Synchronous output(^5) (sensor/pump)
Factory default (OFF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analogue</th>
<th>4-20mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power voltage (EFS)</td>
<td>24VDC±10% at 100mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Nonvolatile memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power voltage(^4)</td>
<td>100-240VAC 50/60Hz</td>
</tr>
</tbody>
</table>

*1 Maximum allowable pulse rate is 500Hz (duty cycle of 50%).
*2 Operation resumption at contact input is also settable.
*3 The maximum applied voltage is 12V at 2.3mA. The minimum application load should be 2.3mA or below when using a relay.
*4 Observe the allowable voltage range of 90-264VAC. Otherwise failure may result.
*5 Pulse wave form of the synchronous output (pulse factor: 0.025ml/p, max frequency: 200Hz, fixed ON time: 2.5ms, minimum OFF time: 2.5ms)

Power cable

<table>
<thead>
<tr>
<th>Conduction section area</th>
<th>0.824mm(^2) (18AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2000 [mm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>SJTW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal treatment</td>
<td>American type plug</td>
</tr>
</tbody>
</table>

Pump colour

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Munsell colour system 7.5PB 3/8</td>
</tr>
<tr>
<td>Red</td>
<td>Munsell colour system 5R 3/10</td>
</tr>
</tbody>
</table>
Outer dimensions

- EWN-B11/-B16/-B21/-C16/-C21 VC/VH/VE/PC/PH/PE

- EWN-B31/-C31 VC/VH/VE/PC/PH/PE
Specifications/Outer dimensions

- **ewn-c36 vc/vh/ve/pc/ph/pe**
 - Dimensions: (10.49”)(1.87”)
 - OUT Dimensions: (4.92”)(2.65”)
 - IN Dimensions: (4.57”)(3.94”)(0.24”)

- **ewn-b11/-b16/-b21/-c16/-c21 fc**
 - Dimensions: (9.07”)(0.51”)
 - OUT Dimensions: (4.92”)(2.65”)(0.39”)
 - IN Dimensions: (4.57”)(3.94”)(0.59”)

Specification
- **EWN-B11/-B16/-B21/-C16/-C21 TC**

![Diagram of EWN-B11/-B16/-B21/-C16/-C21 TC]

- **EWN-B31/-C31 TC**

![Diagram of EWN-B31/-C31 TC]
■ EWN-C36 TC

■ EWN-B11/-B16/-B21/-C16/-C21 SH

Specifications/Outer dimensions
Specifications/Outer dimensions

- **ewn-b31/-c31 sh**
 - IN 1.57" (3.99 cm)
 - OUT 4.92" (12.49 cm)
 - (9.17"
 - (2.65"
 - (2.65"

- **ewn-c36 sh**
 - IN 1.57" (3.99 cm)
 - OUT 4.92" (12.49 cm)
 - (9.17"
 - (2.65"
 - (2.65"

Note:

- All measurements are approximate.
- Dimensions are provided in both inches and centimeters.
- The diagrams illustrate the outer dimensions of the models specified.
■ EWN-B11/-B16/-B21/-C16/-C21 VC-C/VH-C/VE-C (high compression type)

■ EWN-B11/-C16 PC-H/PH-H/PE-H (high pressure type)
■ EWN-B11/-C16 SH-H (high pressure type)

■ EWN-C31 P6-V (high viscosity type)
■ EWN-B11/-B16 (auto degassing type)

■ EWN-C16/-C21 (auto degassing type)
Thank you for choosing our product.

⚠️ Please read through this instruction manual before use.

This instruction manual describes important precautions and instructions for the product. Always keep it on hand for quick reference.